
EAI: Extensible Integration of the John Evdemon
Enterprise and Beyond XML’s self-documenting design
and ability to store and communicate metadata help preserve a flexible, open-applications architecture 6

Feature: Wireless Markup Language Ian Moraes
Using WML to support the presentation layer of your application’s architecture 10

Industry Insider: OASIS and XML.org Bob Sutor
How XML industry specifications are being developed 16

XML Middleware: XML and Messaging Sandeep M. Nayak
Process data in a simple and straightforward manner 24

Java and XML: The Promised Land Israel Hilerio
Working hand in hand to allow processing of information from external systems 30

<e-BizML>: XML in the Enterprise Ajit Sagar
Some business areas in which XML is making an impact 36

Feature: Building Distributed Applications Nick Simha & Dermot Russell

with CORBA and XML Can these technologies benefit from each other? 42

XML Modeling: Specification for the Ilango Kumaran S

Metadata Interchange Bringing consistency and compatibility to applications 58

THE LARGEST XML CONFERENCE OF THE YEAR PG. 8-9

Volume: 1 Issue:1 Premier Issue

The World’s Leading XML Resource

Announcing...
Coming

June 25–28, 2000

September 24–27, 2000

FROM THE EDITOR

Welcome to XML-Journal!
by Ajit Sagar pg. 3

BOOK REVIEW

Dive into the XML Specification
Reviewed by Tija Ragas pg. 28

IMHO

Meaning, Not Markup
by Simon Phipps pg. 66

XML DEMYSTIFIED

Replace DTDs? Why?
by Robert DuCharme pg. 40

2B OR NOT 2B

XML: It’s the ‘X’ that Matters
by Coco Jaenicke pg. 52

XML AND E-COMMERCE

Business-to-Business
E-Commerce: XML’s Killer App

by John Spiers pg. 56

SYS-CON RADIO

Interview with Coco Jaenicke
of eXcelon Corporation pg. 38

From the Internet

Through HTTP Through SMTP

Web Server Mail Server

UML

XML MOF

XMI
Metadata

Interchange

UML

XML MOF

Repositories

Software Assets

Reports/Publishing

Development Tools

Design/Modeling Tools

Database Schema

M3 Meta-Metamodel MOF Model

M2

M1 Metadata Model

M0 Data

Meta-Metadata
Metamodel

UML Metamodel
CWMI Metamodel, etc.

Warehouse Schemas,
Models, etc.

Modeled Systems,
Warehouse Databases, etc.

One of many approaches to
developing Web-based

applications

One of many approaches to
developing Web-based

applications
by Bhaven Shah

see page18

XML

Softquad
www.softquad.com

2 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

3V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

I’m sitting at my desk writing this editorial for the premier issue of XML-Journal for just one
reason. And you’re holding the issue in your hands for exactly the same reason: we both want
to talk about XML – a technology that has revolutionized electronic commerce and enterprise
computing and is going to completely refurbish the face of business as we know it today. The
editorial board of XML-Journal and SYS-CON’s writers and editors want to share their experi-
ences in using this technology with you, and we want you to share yours with us. Tell us what
you think of XML-J and how we can best serve your needs. We want to become your one-stop
shop for all matters XML.

Before I go on, I guess I should introduce myself and talk about the origins of XML-Journal.
I’ve been a contributing editor to our sister publication, Java Developer’s Journal, since its
inception, and currently write an e-Java column that focuses on Java and e-business. During
JavaOne last June, I had an early morning breakfast session with SYS-CON management and
the editorial group about a new, XML-focused publication. We decided to test industry interest
by publishing the September ’99 JDJ as an XML Focus issue. This issue sold out on the news-
stands and we received very positive feedback from our readers. Thus XML-J was born.

XML DevCon 2000: XML Conference and Expo
The feedback and industry interest indicated a lack of good, conve-

nient and easily accessible sources of current information on XML and
related technologies. For this reason XML-J recently announced XML
DevCon 2000, the only XML conference/expo on the East Coast this
year, from June 25 to 28. We are determined to make this conference
the most valuable and informative XML-focused gathering ever put
together. More information on the conference is available elsewhere in
this issue and at www.xmldevcon2000.com. Mark your calendars!

Coming Up in XML-Journal
Now let’s talk about what we’re going to talk about in XML-Journal in the coming year. This

premier issue is being published in the first quarter of the new millennium. Technologies from
the last millennium will play a pivotal role in defining business in the years to come. XML is
one of these technologies. Only a few years old, it already holds the promise of uniting com-
puting platforms through a common paradigm. An interesting thing to note about the XML
community is that it’s a hybrid of the development and business communities. That partially
explains why this magazine, unlike the others in the SYS-CON family, doesn’t have the word
Developer’s in it. XML-J will concentrate on e-business and e-commerce, as well as on the
development aspects of XML and related technologies.

Each issue we’ll offer feature articles on a particular sector of XML in the industry. Other sections
of the magazine will be dedicated to different XML technologies and verticals. XML Standards and
XML Insider will bring you the latest developments in the XML language itself. Bob Sutor, chief
strategy officer at OASIS, will update you on this subject in every issue. Coco Jaenike will tell you
about XML in the B2B marketplace. Israel Hilerio will show you how the worlds of XML and Java
meet. My own contribution will be on XML’s impact on e-business.

Each month we’ll also try to bring you interviews with industry leaders in XML technologies. This
month we talked to Coco Jaenike about the XML-related developments at eXcelon Corporation.

In forthcoming issues we’ll highlight a couple of vendors who will write about XML tech-
nologies and what role their company plays in the industry. We’ll also bring you a mix of tuto-
rials, case studies, book and product reviews, letters from readers and the latest news in the
XML arena.

We’d like you to contribute your own ideas to the magazine. Have you thought of a new way
to apply the technology? Do you have some insights you can share with other readers? Are
there concepts you can explain to others who are trying to get aboard this fast technology
train? We’re eager to hear from you.

In addition to the print issue you’re reading, XML-J is also available online at www.sys-
con.com/xml/index2.html. I encourage you to submit your ideas, feedback and opinions, and
to share your experiences with readers like yourselves.

So go ahead. Turn the page. And welcome to the wonderful world of XML-J!

EDITORIAL ADVISORY BOARD
COCO JAENICKE, SIMON PHIPPS, AJIT SAGAR, BOB SUTOR

EDITOR-IN-CHIEF: AJIT SAGAR
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

ASSOCIATE EDITOR: NANCY VALENTINE
XML INDUSTRY NEWS EDITOR: ALAN WILLIAMSON

E-BUSINESS EDITOR: ISRAEL HILERIO
JAVA TECHNOLOGY EDITOR: JASON WESTRA

WRITERS IN THIS ISSUE
BOB DUCHARME, JOHN EVDEMON, ISRAEL HILERIO, COCO JAENICKE,

ILANGO KUMARAN S, IAN MORAES, SANDEEP M. NAYAK, SIMON
PHIPPS, TIJA RAGAS, DERMOT RUSSELL, AJIT SAGAR, BHAVEN SHAH,

NICK SIMHA, JOHN SPIERS, BOB SUTOR

SUBSCRIPTIONS
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE
800 513-7111

COVER PRICE: $8.99/ISSUE
DOMESTIC: $49.99/YR. (6 ISSUES) CANADA/MEXICO: $59.99/YR.

ALL OTHER COUNTRIES $69.99
(U.S. BANKS OR MONEY ORDERS)

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN
VICE PRESIDENT, MARKETING: CARMEN GONZALEZ

CHIEF FINANCIAL OFFICER: ELI HOROWITZ
ACCOUNTING MANAGER: JO-ANN COFFEY
CIRCULATION MANAGER: MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: MEGAN RING
ROBYN FORMA

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL
GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN

WEBMASTER: ROBERT DIAMOND
WEB EDITOR: BARD DEMA

WEB SERVICES CONSULTANT: BRUNO Y. DECAUDIN
WEB SERVICES INTERN: BRYAN KREMKAU

CUSTOMER SERVICE: CAROL KILDUFF
ANN MARIE MILILLO

ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

EDITORIAL OFFICES
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM

XML-JOURNAL (ISSN# PENDING)
is published bimonthly (6 times a year) by

SYS-CON Publications, Inc., 39 E. Central Ave.,
Pearl River, NY 10965-2306

Periodicals Postage rates are paid at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
XML-JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

©COPYRIGHT
Copyright © 2000 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint

coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and
authorize its readers to use the articles submitted for publication.

WORLD DISTRIBUTION
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD, NJ 07646-3048 PHONE: 201 634-7400

All brand and product names used on these pages are trade names,
service marks or trademarks of their respective companies.

SYS-CON Publications, Inc., is not affiliated with the companies
or products covered in XML-Journal.

from
 the
editor

from
 the
editor

WRITTEN BY AJIT SAGAR EDITOR-IN-CHIEF]

WelcometoXML-Journal!

A J I T @ S Y S - C O N . C O M AUTHOR BIO
Ajit Sagar is the founding editor and editor-in-chief of XML-Journal and a member of a leading e-commerce firm in Dallas, Texas,

focusing on Web-based e-commerce applications and architectures. He is a leading Java and XML expert.

volume1 issue1 V I S IT U S AT www.XML-JOURNAL .com

The purpose of this article is to suggest a
broader EAI strategy that leverages the
power and flexibility of Extensible Markup
Language. XML provides a platform-agnos-
tic, technology-neutral form of structuring
messages. By avoiding specific platform or
technical messaging requirements, the
approach to systems integration becomes
more open and thus more extensible.

This article also examines possible
approaches for using XML with data-
base middleware, distributed objects,
message-oriented middleware, applica-
tion servers and EDI.

Issues Associated with EAI
TIGHTLY COUPLED DESIGNS

One of the potential issues associated
with EAI is its limited scope – EAI is con-
cerned with a single enterprise. The suc-
cess of the business-to-business (B2B) e-
commerce model has required firms to
focus beyond their internal systems.
Businesses interested in automating
their supply chain via an extranet or
communicating with trading partners
via well-defined B2B interfaces are con-
fronted with much more challenging
integration issues than the typical EAI
project. For example, a company’s mid-
dleware or messaging product may not
be fully compatible with all trading part-
ners. (Promotion and adoption of a B2B

strategy is most successful when part-
ners’ technical demands are minimized
or effectively eliminated.) Since EAI typi-
cally focuses on integrating applications
within a single company, a data-level or
API-level approach is usually chosen.

A data-level approach to EAI focuses
on the processes, techniques and tech-
nologies required for transporting system
data from one data store to another. (The
term data store is used here instead of
database since some EAI efforts utilize
both relational and nonrelational data.)
Typical processes may be devoted to
extraction, transformation and loading of
the data (commonly referred to as the ETL
model). Extraction of the data typically
requires some form of middleware (such
as ODBC), while the transformation and
loading of the data can be accomplished
via custom software and/or COTS (com-
mercial, off-the-shelf) packages.

An API-level approach to EAI requires
the use of programmable interfaces
exposed by system vendors that can be
utilized to develop third-party exten-
sions and system integration. While this
approach to EAI has the advantage of
using proven, mature technologies (ven-
dor APIs are usually very reliable), the
functionality of the interfaces varies
depending on the vendor. The costs
associated with hiring and retaining

developers familiar with vendor APIs
may also be somewhat prohibitive.

While there are several advantages to
using a data-level or API-level approach
to EAI, the end result is usually a tightly
coupled design that can be extremely
difficult to extend to partners outside
the enterprise. However, if the design
requires all messages to be constructed
in a platform-neutral format using XML,
it becomes much more flexible and sig-
nificantly lowers the entry barriers for
partners outside the enterprise.

TOOL IMMATURITY
As stated earlier, most EAI vendors

tend to focus on and promote the tech-
nical capabilities of their products
(especially in terms of middleware)
instead of building expertise in specific
business processes and business/
application semantics. Eventually they
will begin to build expertise in these
areas (rather than the one-size-fits-all
approach currently favored by many
vendors). For now, EAI vendors contin-
ue to focus on technical features since
they’re easily marketed and under-
stood. A more nebulous feature (such as
business semantics) can be extremely
difficult to market and implement.

The emergence and subsequent pop-
ularity of XML helps facilitate the devel-
opment and integration of business and
application semantics – enterprises can
define their own data elements (e.g.,
tags) to better communicate the “mean-
ing” of their data. XML’s self-document-
ing design enables external partners to
communicate with a greater level of clar-
ity, ensuring that message constructs will
be processed in the appropriate manner.

XML’s self-documenting design and ability to store and communicate
metadata help preserve a flexible, open-applications architecture

O
ne of the most significant challenges that businesses have traditionally faced is the integration of various sys-
tem components throughout the enterprise. Over the past year, EAI (enterprise application integration) has
emerged as a popular approach for integrating systems and gaining a strategic advantage in the market-
place. A corporation that has successfully integrated their internal systems is better positioned to take advan-
tage of the opportunities that emerge following this effort. A financial services firm, for example, could prof-

it from “cross-selling” products and services that in the past may have been tied to monolithic, proprietary systems that
were incapable of sharing information. Tool vendors such as NEON, IBM and BEA have enabled businesses to take advan-
tage of EAI using technologies such as message brokering, MOM, CORBA, COM and others.

ExtensibleIntegrationofthe
EnterpriseandBeyond

4

enterprise
 application
integration

enterprise
 application
integration

[WRITTEN BY JOHN EVDEMON

volume1 issue1V I S IT U S AT www.XML-JOURNAL .com

MESSAGE BROKERS
Message brokers are frequently

referred to when discussing EAI vendors
and tools. Unfortunately, their function
usually isn’t well understood. They
behave much like message-oriented
middleware products (such as MQ-
Series) with some additional capabilities.
These additional capabilities vary with
the associated vendor but usually consist
of:
• Transformation options
• Store and forward messaging
• Bridges for communicating with spe-

cialized COTS packages
• Management tools for tuning the

transformation rules engine and mon-
itoring overall performance

A listing of message broker vendors
and products appears elsewhere in this
article.

While message brokers do a good job
of connecting applications via messag-
ing, they don’t adequately communicate
the semantics of the message being
transmitted. As indicated previously,
XML should be used to format messages
for transmission since it preserves the
semantics. Some message brokering
tools, such as MQSeries Integrator,
already offer limited support for XML
(messages can be transformed by the
tool’s rules engine into XML using an
agreed-upon schema).

Business Processes and the
Hub/Spoke Architecture

A typical EAI solution employs a hub-
and-spoke architecture as illustrated in
Figure 1.

Applications within the enterprise
access data from a central hub via applica-
tion spokes. Data within the hub is popu-
lated via ETL processes that can be colocat-
ed at each application and/or within the
hub itself. While this model appears to be
ideal, it rarely reflects the nature of the rela-
tionships between the associated applica-
tions. Many business processes don’t easily
fit into the model illustrated in Figure 1. In
many enterprises business processes can
(and do) cross both functional and organi-
zational boundaries, resulting in cross-sys-
tem dependencies that may exist outside
the hub/spoke architecture. The data re-
quired to use these overlapping processes
may be dependent on the sequence and/or
frequency of the ETL processes. Integrating
this data can be extremely difficult to man-
age.

One possible solution to this issue is
to ensure that the data stored at the hub
uses an open, extensible format that can
be quickly and easily accessed by multi-
ple business processes. Leveraging XML
for the EAI hub helps ensure that the
data is stored in a well-defined (assum-
ing common storage schemas are used),
highly accessible format.

XML and Middleware
This article has focused on the poten-

tial issues associated with EAI and how
XML can be leveraged to minimize these
issues. Middleware is the enabling tech-
nology for EAI. Implementing an EAI
solution is simply not possible without
using some sort of middleware.

The remainder of this article discusses
how XML can be used to extend existing
middleware tools and processes within

and across multiple enterprises. It’s
important to note that, while XML is
capable of enabling a great many things,
it can’t and won’t (at this stage) complete-
ly replace tried-and-true middleware
solutions. It can, however, extend the flex-
ibility and openness of these solutions.

XML and Distributed Objects
The category of distributed objects

covers a fairly broad spectrum of mid-
dleware solutions. We’ll categorize the
following ones as distributed objects:
• Remote Procedure Calls (RPCs): This

approach, while technically not objects
in the classic sense, encompasses tech-
nologies such as DCE (Distributed
Computing Environment).

• Common Object Request Broker Archi-
tecture (CORBA) (as defined by OMG):
Enables applications from different
locations and vendors to communi-
cate with one another via an ORB
(Object Request Broker) by trapping
method calls and mapping them to
the appropriate object.

• Component Object Model (COM)/Dis-
tributed Component Object Model
(DCOM): DCOM was developed by
Microsoft and is conceptually similar
to DCE. Applications developed for
the Microsoft environment contain
interfaces that enable client objects to
request services from one or more
server objects regardless of their loca-
tion on the network. DCOM grew out
of Microsoft’s COM, which enabled
client and server processes to com-
municate on a single machine.

• Enterprise JavaBeans (EJB): EJBs are
similar in concept to CORBA but are
tied to a single programming lan-
guage implementation (Java). The EJB
architecture enables developers to
create robust server-side components
(written in Java) that can be reused by
clients or other server-side processes.

While XML shouldn’t be viewed as a
replacement for the above-listed solu-
tions, it can be used to extend their flex-
ibility. Listed below are several initia-
tives currently underway to use XML
with distributed objects.

RPC
Transportation of RPC messages has

traditionally required the use of “closed”
wire protocols such as DCOM or CORBA
IIOP. The XML-RPC specification ex-
plains how proxies and stubs can com-
municate via HTTP and use XML as the
encoding mechanism (instead of DCE
RPC Protocol Data Units [PDUs]), and
it’s been implemented for several plat-
forms and programming languages.FIGURE 1 Typical EAI architecture

5

volume1 issue1 V I S IT U S AT www.XML-JOURNAL .com6

CORBA and COM/DCOM
The massive growth of Web-based

application development prompted the
W3C in May 1998 to issue a Note on
incorporating the benefits of distributed
objects in a platform-neutral manner.
The traditional approach of POSTing
HTML forms lacks the security, scalabil-
ity and object interoperability of a typi-
cal distributed system. The W3C Note
explains how proxies and skeletons can
communicate via HTTP, XML and URIs.
This approach results in a far simpler
implementation since the transport
mechanism (HTTP) is already provided.
Formatting messages with XML enables
an open and flexible standard to be used
for marshaling and communicating
object metadata for a CORBA interface
repository or Microsoft COM/DCOM
registries.

EJBS
Sun Microsystems’ EJB specification is

a cross-platform component architec-
ture for the development and deploy-
ment of multitier, distributed, scalable,
object-oriented Java applications. Unlike
CORBA and COM/DCOM, EJB-based
distributed objects are language specific
(they can be written only in Java). An
EJB-enabled server manages containers
that in turn manage one or more EJB
classes (or instantiations of classes). The
container can be thought of as a “wrap-
per” that provides additional services
(transaction control, lifecycle manage-
ment and security) to the bean. The EJB
deployer installs EJB classes on the serv-
er and is responsible for configuring
such properties as the location, schema
and transactional capabilities of the
underlying database.

Sun is planning to use XML for use with
EJB deployment options (also known as
deployment descriptors). The EJB 1.0 specifi-
cation relied on a serialized format that was

difficult to configure as it was hard to deter-
mine who was the information provider
and who was the information consumer. As
with the previously mentioned distributed
object categories, messages (in this case,
serialized Java objects) can be formatted
with XML to maximize flexibility.

Additional information regarding the EJB
specification appears at the end of this article.

XML AND MESSAGE QUEUING
The primary products in the Message

Oriented Middleware (MOM) arena are
IBM’s MQSeries and Microsoft’s MSMQ.

In June 1999 IBM announced native
support for XML within its MQSeries
family of products. MQSeries messages
can now be formatted into XML and
transmitted using the MQSeries trans-
port. An additional MQSeries product,
the MQSeries Integrator, provides the
ability to bridge between XML-based
and non-XML data, thereby accelerating
the adoption of XML as a standard mes-
saging format. (It should be noted that
messages that are formatted using XML
will result in dramatically larger mes-
sage sizes, potentially impacting mes-
sage processing performance.) IBM
plans to provide further MQSeries sup-
port for XML via the Common Messag-
ing Interface (CMI), which provides a

A

B

C

D

E

F

G

H
Q
RI

L

M

N

O

P

S

T

V

X
W

ATB, Inc.
Active Software
Adventive Technologies
Affinity Media, Inc.
Alier
Alodar Systems, Inc.
Altis, Inc.
Availability, Inc.

BEA Systems, Inc.
Bluestone Consulting, Inc.
Bluestone Software, Inc.
Braid

CSK
Cambridge Information Technology

Ltd (CITL)
Candle
Cel Corporation
Clarkston-Potomac
Compaq
Computer Network Technology Corp.
Conextions, Inc.
Constellar Corporation
CrossTier
CrossWorlds Software

DCI
Darc Development Corporation
Data Dimensions
DataBase Consulting Group, Inc.

eFORCE
Enterprise Automation Advisors, Inc.
Evolutionary Technologies

International (ETI)

FRONTEC AMT
Forte
Fujitsu
FusionWare

GE Information Services
Genesis Development Corporation
Glue Technology

HIE
HiServ Australia Pty Ltd
Hitachi Computer Products

(America), Inc.

IBM
ISG International Software Group
InConcert
Information Builders, Inc.
Integrated Design, Inc.
Integrion
International Middleware Association

(IMWA)
iWork Software

Level 8 Systems, Inc.
Lingwood Software
Liquid Software, Inc.
Logica
Lorac, Inc.

M/Ware
MINT Communication Systems Inc.
MITEM
Mastech
Masterchart
MicroTempus
Microsoft
Missat Consulting

N-Able Group International
NEON Systems, Inc.
Net Dynamics
Netik
New Era Of Networks (NEON)

ObTech
Oberon Software
OnDisplay
Open Applications Group
Oracle
Osprey Systems, Inc.

PIDAS Ltd.
PRL Scotland Ltd.

Primus
Progress Software

QAD

Red Oak Software
Relativity Technologies
Renaissance Worldwide

S2 Systems
SAA Consultants Ltd
SAGA
Stellar Software Corporation
Scribe Software Corporation
Selectica
Sequoia
SilverStream
SmartDB Corporation
Software Associates
Software Technologies Corporation

(STC)
Stellar Software Corporation
SuperNova, Inc.
Systems & Computer Technology

(SCT)

TIBCO
TSI Software Inc
TanitObjects
Tempest Software
Template Software
Tivoli
TopTier Software

VIESystems
Vertex Industries
Vitria Technology

Whittman-Hart, Inc.
Wilco International

Xing

SELECTED EAI VENDORS
en

te
r

p
r

is
e

a
p

p
li

c
a

ti
o

n
 in

te
g

r
a

ti
o

n
 [

C
O

N
T

IN
U

E
D

]

XML’s self-documenting design and
ability to store and communicate metadata
help preserve a flexible, open-applications
architecture

‘‘ ‘‘

logical message construction API similar
to the MQI (Message Queue Interface,
the MQSeries API). CMI will provide the
ability to construct and parse messages
regardless of their physical representa-
tion and will be capable of parsing both
XML and language-dependent struc-
tures (such as those found in C, COBOL
and Java).

While Microsoft’s MSMQ product has
yet to provide direct support for XML, mes-
sages can still be formatted in XML and
transmitted using the MSMQ transport.

Summary
This article has attempted to docu-

ment possible uses of XML within EAI
and B2B integration scenarios, and a
common thread running through it is
formatting messages using XML. This
helps avoid a tightly coupled design that
can potentially lock out other applica-
tions or companies.

While XML won’t immediately replace
standard EAI tools and middleware
solutions, its self-documenting design
and ability to store and communicate
metadata help preserve a flexible, open-
applications architecture.

AUTHOR BIO
John Evdemon is
an architect with
XMLSolutions, a
software and
professional services
organization. John, who
specializes in large-scale
B2B systems using XML,
has more than 11 years
of experience designing,
developing and
implementing systems.

7V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Tango Developer’s
Journal

www.tangojournal.com

A

B

C

D

E N
O

F

G
H
I

L
M

R

S

T

P

X

AMTrix
Active Works
ActiveEnterprise
Application Adapters

BEA eLink
BusinessBus
BusinessWare Analyzer
BusinessWare Automator
BusinessWare Communicator
BusinessWare Connectors
BusinessWare Server

COPERNICUS
CelWare
Certified LiquidLINK Consulting
Cloverleaf
Cloverleaf Finance
Constellar Hub
Constellar WarehouseBuilder

DART
DETAIL DB-Mover
DETAIL Navigator
Data Integrator
DataGate Enterprise Applications
Integration Product Suite
DataGateWay
dcServ

Electric Works Integration Frame-
work
Evolve
Expresso Series

File Transfer Facility for MQSeries
(FTF/MQ)

Forté Fusion
Forté Application Development Suite

Geneva Integrator

HIT

I/O Exchange
ISG Navigator
InterPlay
Interchange2000(i2K)

LiquidLINK Plus
LiquidLINK

MINT Rule Manager
MQ-IQ
MQSeries Client for Stratus VOS
MQSeries Integrator
MQexpress
Mercator

NEONet
Network Express Release 8.0

OM3

Process Integrator
Prospero

REIMS E-business Open
Transaction Server

REIMS Extranet Server
ROMA Business Service Platform

SMDX Gateway
STP Explorer for Workflow
SagaVista
Sapphire/Web
Shadow Direct
Skyscraper

TGEN for MQSeries
TPBroker

X-Gen
XML-Server
IXpress

J E V D E M O N @ A C M . O R G

SELECTED EAI PRODUCTS

Join 1,500 XML
enthusiasts, the
industry's most respected
technical experts, sought-after
gurus and advanced users.
Take advantage of 4 days of
XML intellect and master
new skills from those who
are defining XML's future.

Produced by:Presented by:

W W W . X M L D E V C O N 2 0 0 0 . C O M

Cosponsored by:

Plan to attend the only XML event coming to

CONFERENCE:
June 25–28, 2000

EXHIBITION:
June 26-27, 2000

New York Hilton
New York City, New York

TWO-DAY EXHIBIT
Free Special Events Open to All!
Exhibit Hours: Monday, June 26, 12:00 – 6:30

Tuesday, June 27, 12:00 – 6:00
The full-scale exhibit hall packed with
leading vendors will be on hand to
demonstrate the latest products and
answer your questions.

■ Keynote Presentations
■ Product Education Sessions
■ Technology Briefings
■ Panel Discussions
■ Birds of a Feather Sessions
■ Product Giveaways

TOPICS COVERED
The industry’s recognized XML experts
led by technical cochairs, Ken North and
Max Dolgicer, have designed the
technical program which includes
70+ sessions with over 70 hours of.
Instruction. Topics include:
■ Leveraging XML in ColdFusion

using WDDX
■ Adding XML Capabilities with Cocoon
■ Using Apache as HTTP Front End

for an XML Database
■ High-Performance Dynamic Web

Serving Using Templates and XML
■ Java, XML and DOM
■ Building Enterprise Integration

Servers with Message-Oriented
Middleware and XML

■ XML & Middleware: Moving
Beyond Documents

■ Simple Workflow Access Protocol
■ The Role of XML in Knowledge

Management
■ Components, XML and DHTML:

The Perfect User Interface
■ Python & XML
■ Hybrid Clients: The Next Generation

of UI
■ Distributed Object Architecture with

XML and CORBA
■ Automating Capital Market Activities
■ Microsoft DAV and Its Use in

Exchange
■ XML & XSL by Xample
■ XML and Windows DNA
■ What's Wrong with DTDs and

What's Being Done About It

XML-JOURNAL SETS THE STANDARD

This eagerly anticipated and widely

coveted magazine, packed with

information written by leading XML

gurus, is the only resource you need

to understand

and make the

most of the

latest XML

advancements.

TECHNICAL CO-CHAIRS
Ken North, President
KEN NORTH COMPUTING, LLC
Ken North is an author, consultant and
company founder. He teaches Expert
Series seminars and is writing XML,
Java and Database Magic. Ken North
has been a columnist for several
industry trade publications and is
coauthor of Database Magic and
Windows Multi-DBMS Programming.

Max Dolgicer, Technical Director
INTERNATIONAL SYSTEMS GROUP, INC. (ISG)
Max Dolgicer is a leading authority in
Enterprise Application Integration, Web
Application Integration and Middleware.
ISG is a New York-based consulting
firm that specializes in design, development
and integration of large-scale distributed
applications using leading edge Internet
and middleware technologies.
Max Dolgicer is a contributing editor for
Application Development Trends
magazine and a frequent contributor to
a number of major trade journals.

Register online for your
FREE Exhibit Pass – a $2500 value!

BENEFIT BY ATTENDING
■ The tips and techniques you’ll learn

will help you do your job better.
■ Discover the applications being

developed today that yuo’ll need
tomorrow.

■ Sessions are designed for users
at all levels, with special sessions
just for gurus.

■ Network with fellow software
developers as well as
recognized XML experts.

■ Learn how XML is
being used for large-
scale enterprise
applications.

Media Sponsors:

W W W . X M L D E V C O N 2 0 0 0 . C O M

Every delegate receives a FREE one year subscription to
XML-Journal and Java Developer’s Journal — A $9900 VALUE

New York’s Silicon Alley!
Register

by MAY 19
and

SAVE $200!

10 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

WIRELESS
MARKUP
LANGUAGE

WIRELESS
MARKUP
LANGUAGE

Using WML
to support the

presentation
layer of your
application’s
architecture

11V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

The ability to access Web content and send e-mail messages

from a wireless phone has become a requirement for the rapidly growing

segment of wireless Internet users. Application development for wireless

devices can be more challenging than conventional Web development due

to the inherent characteristics of wireless devices – small display areas,

narrow bandwidth connections, limited means for user input and limited

memory resources. In addition, there are disparate vendor-specific wire-

less devices and presentation mechanisms.

To address some of these issues, the Wireless Application Protocol
(WAP) Forum has defined a standard for the presentation and delivery of
information to, for example, wireless phones, pagers and personal digital
assistants (PDAs). The Wireless Markup Language (WML) is a specifica-
tion of the WAP Forum pertaining to the presentation of content and user
interface behavior on wireless devices. WML was designed to accommo-
date presentation on limited-capacity devices such as wireless phones.

WML is an XML language that inherits the XML document character
set and most of the XML syntax. The document character set for WML is
the Universal Character Set that is currently identical to Unicode 2.0.
WML is specified as an XML document type definition (DTD), and is
supported on any device that is WAP compliant. This article focuses on
using WML for delivering content for presentation on WAP-compliant
wireless devices.

Before I discuss WML, I think an overview of the WAP development
model will be helpful. WAP programming is based on the Web program-
ming paradigm. The model, as shown in Figure 1, comprises three major
components.

The client component of the model is a WAP user agent that can inter-
pret WML and present WML content to a user in a form appropriate for
that type of wireless device. As its name implies, a WAP gateway converts
to and from the wire-based and wireless domain, translating requests
and responses from the TCP/IP protocol stack to the WAP protocol stack
and vice-versa. It translates Web content into compact, encoded formats
to increase transmission efficiency over the wireless network. WML can
be encoded using a scheme based on the WAP Binary XML Content For-
mat. A WAP gateway is required to access WML content over the Internet
using HTTP requests. The server component of the model consists of a
Web server, servlets and/or CGI scripts that generate WML content in
response to requests.

Now that you’re familiar with how WML fits into the overall WAP envi-
ronment, we can begin to discuss the WML syntax.

WML Essentials
WML content is sent to a WAP-compliant device in the form of a deck.

WML decks can be stored in the form of static WML files on a Web serv-
er or can be dynamically generated by CGI scripts or servlets. A WML
document or deck consists of one or more cards, each of which repre-
sents a unit of interaction with a user. Typically, a card presents infor-
mation and allows a user to enter text or select from a list of menu choic-
es. A user navigates from one card in a deck to the next.

In WML, an element describes markup information about a deck. An
element may be of two forms: <tag>content</tag> or </tag>. Table 1
summarizes some typically used WML elements.

Most WML elements have attributes that let you specify additional infor-
mation about how a WAP device should interpret an element. All attribute
values must be enclosed within single (’) or double (”) quotation marks.
Character entities can be included in attribute values. WML supports both
named character entities and numeric character entities. WML entities
represent specific characters in the document character set. For example,
the named entity & is used to represent the ampersand character (&).
Note that, like XML and unlike HTML, WML is case sensitive.

A valid deck is a valid XML document; thus a valid deck must be com-
posed of an XML declaration and a document-type declaration. The
high-level syntax for defining a WML deck is shown below. All cards in a
deck are defined within the <wml> element. Note the use of a comment
(<!-- a WML comment -->) in the WML code.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

<card>

<!-- Elements of card -->

</card>

<card>

<!-- Elements of card -->

</card>

</wml>

Examples
Given the familiarity of e-mail clients, the examples used to illustrate

WML in this discussion will focus on three major use cases: (1) logging in
to an e-mail server, (2) presenting a list of e-mail client menu options,
and (3) sending an e-mail message.

Since the focus of this article is WML, only WML code will be used to
develop the presentation component (View) of an e-mail client application
for mobile devices. The Model and Controller components of this type of
application (e.g., servlets, Enterprise JavaBeans) won’t be discussed. How-
ever, at the end of this article there is a reference to a recent article on Java-
Mail that discusses how e-mail client functionality can be supported.

The code shown here was developed using the UP.SDK, which pro-
vides a WAP development environment. The toolkit includes a phone
simulator with a browser that supports WML. SDKs that support devel-
opment using WML can be downloaded from the sites listed in the Ref-
erence section of this article.

FIGURE 1 The WAP development model

WAP User
Agent

CLIENT
Encoder

Decoder

WAP GATEWAY
Web Server

Servlets/CGI Scripts

SERVER
Encoder

Decoder

WAP GATEWAY

WAP HTTP

[WRITTEN BY IAN MORAES]

The ability to access Web
content and send e-mail
messages from a wireless phone
has become a requirement for
the rapidly growing segment of
wireless Internet users

‘‘‘‘

12 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

Login to E-Mail Server
A core use case for e-mail clients involves a user requirement to enter

a login name and password for authentication purposes. This use case
requires masking the password entered by a user and sending the values
back to the server (Web server, servlets) for processing.

A number of WML elements are needed to support this use case. The
<input> element has a name attribute that specifies the variable that a
device uses to hold user input. This element also has a type attribute
that masks the password (replaces the characters by asterisks) being
input. The href attribute of the <go> element is used to specify naviga-
tion to a servlet for processing the user login while the method attribute
of the <go> element specifies the HTTP submission method (post). The
<postfield> element passes the login name and password to the HTTP
server receiving the <go> request. The value attribute of the postfield
element in the code below uses WML variables. For example, the value
of the WML variable $pwd is substituted at runtime with the actual
password entered by the user. A code snippet for entering the user ID
and password is given below. A more complete code listing is shown in
Listing 1.

<do type="accept">

<go method="post" href="http://localhost:8080/servlet/Login-

Servlet">

<postfield name="user" value="$userid&"/>

<postfield name="password" value="$pwd&"/>

</go>

</do>

<p>

Password:

<input name="pwd" type="password"/>

</p>

A simulated wireless device presentation and navigation of the two
WML cards defined in Listing 1 that allows a user to log in to an e-mail
system is displayed in Figure 2.

Main Menu of E-Mail Client
After logging in to an e-mail server, a user is typically presented with a

list of menu options (e.g., send an e-mail message).
A number of WML elements and attributes are needed to support this

use case. The <select> element is used to present the user with e-mail
menu choices. The onpick attribute of the <option> element specifies
the card to navigate to when that menu option is selected. In this exam-
ple, if the user wants to send a message, the next card shown is the card
within the deck with the “send” ID. The id attribute of the <card> ele-
ment specifies a name that lets you navigate to the card from other cards
in the same deck. The code below shows how e-mail menu options may
be presented to a user.

<!-- Sample card for showing main e-mail menu -->

<card id="main">

<p mode="wrap">

My E-mail Messenger

<select>

<option onpick="#send">Send a message</option>

<option onpick="#get">Get messages from server</option>

<option onpick="#logout">Logout</option>

</select>

</p>

</card>

A display of the presentation of this WML card, showing a user e-mail
menu choices, is shown in Figure 3.

Sending an E-Mail Message
From the main menu an e-mail user can create and send a simple text

e-mail message. The “send” card is navigated from the main menu, as
shown in the previous example. Multiple cards are needed to accomplish
this use case.

The WAP phone simulator used for development has a programmable
soft key. The <do> element is used to map an action to a soft key. The href
attribute of the <go> element is used to specify navigation to the next
card to be displayed. A code snippet from the first card used to send an
e-mail message is shown below. A more complete code listing for send-
ing an e-mail message is shown in Listing 2.

<do type="accept" label="ok">

<go href="#subject"/>

</do>

<p>

To:

<input name="to"/>

</p>

A display of the presentation and navigational sequence of the three
WML cards defined in Listing 2 for creating and sending an e-mail mes-
sage is shown in Figure 4.

TABLE 1 Important WML elements

WML ELEMENT DESCRIPTION
<wml> Specifies a deck
<card> Defines text and input elements that support interaction with user
<input> Prompts user to enter text string or numbers. Attributes of this element can limit entry to numbers, set a maximum input length or specify default input values
<do> Declares action that wireless device will perform when user presses key specified by type attribute. Label attribute specifies label to display for function key
<go> Specifies URL to navigate to. The <go> element is used to specify task to perform <do> action. An attribute of this element defines HTTP submission method (i.e., get or post) to be used
<select> Prompts user to choose one or more items from specified list. Attributes of this element specify single or multiple selection, title of element and default item selection
<option> Specifies single choice in select statement. An attribute specifies URI to navigate to when option is selected
<p> Defines paragraph. Attributes specify line-wrapping modes and alignment
 Includes image in card. Attributes specify URI for image, alternative text to display if images aren’t supported, image alignment
<postfield> Specifies name-value pair to be transmitted to server during URI request. Attributes specify field name, field value

FIGURE 2 WAP client display of user login

User ID:

OK

Password:

OK

13V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Sequoia Software
www.xmlindex.com

14 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

WAP client validation of user input is an
important consideration, given the inherent
limitations of wireless devices. WMLScript
could be used to validate user input such as
an e-mail address before it’s sent to a servlet
for further processing. For those who have
used HTML scripts, WMLScript is a procedur-
al scripting language based on ECMAScript
and adapted to suit the needs of wireless
devices.

Conclusion
If you’re developing applications for wire-

less devices, you should consider using WML
to support the presentation layer of your
application’s architecture. WML provides a
standard and extensible delivery mechanism
of content for presentation on a plethora of
display-constrained, WAP-compliant mobile

devices. WML provides a developer with a
means to focus on the content to be displayed
rather than on the variety of proprietary pre-
sentation mechanisms of mobile devices. For
more information on WML and SDKs with
support for WML, please see the references
below.

References
1. Wireless Markup Language Specification

Version 1.1: www.wapforum.org
2. UP.SDK WAP Software Development Kit:

www.phone.com
3. Nokia WAP ToolKit: www.forum.nokia.com/
4. Moraes, I. (1999). “JavaMail: Framework for

Developing Internet-Based E-Mail Client
Applications. Java Developer’s Journal, Vol.
4, issue 10.

5. WMLScript Language Specification:
www.wapforum.org

My E-mail Messenger
1 Send a message
2 Get messages from server
3 Logout

OK

FIGURE 3 WAP client display of main e-mail menu

FIGURE 4 WAP client display of cards for sending e-mail

Message Text:

OK

Subject:

SendOK

To:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<!-- LISTING 1 -->
<!-- Two cards used to accept userid and password -->
<!-- First card gets user id and then goes to password card
-->

<wml>
<card id="userIdLogin">

<do type="accept">
<go href="#pwdLogin"/>

</do>
<p>

User Id:
<input name="userid"/>

</p>
</card>

<!-- This card accepts password and sends values -->
<!-- to Login servlet for authentication -->
<card id="pwdLogin">

<do type="accept">
<go method="post"

href="http://localhost:8080/servlet/LoginServlet">
<postfield name="user" value="$userid&"/>
<postfield name="password" value="$pwd&"/>

</go>
</do>
<p>

Password:
<input name="pwd" type="password"/>
</p>

</card>
</wml>

<!-- Three cards used for sending an e-mail message -->

<!-- Note this is not a deck -->

<!-- First card is for entering recipient of e-mail -->
<!-- then navigate to next card for subject of message -->
<card id="send">

<do type="accept" label = "ok">
<go href="#subject"/>

</do>
<p>

To:
<input name="to"/>

</p>
</card>

<!-- This card is for entering subject of message -->
<card id="subject">

<do type="accept">
<go href="#msgtxt"/>

</do>
<p>

Subject:
<input name="subject"/>
</p>

</card>

<!-- This card accepts message text and sends values -->
<!-- to Send E-mail servlet for transmission to E-mailServer-->
<card id="msgtxt">

<do type="accept" label="Send">
<go method="post"

href="http://localhost:8080/servlet/SendServlet">
<postfield name="to" value="$to&"/>
<postfield name="subject" value="$subject&"/>
<postfield name="text" value="$text&"/>

</go>
</do>
<p>

Message Text:
<input name="text"/>

</p>
</card>

Download the
Co

d
e!

The
cod

el
ist

ing
for

thi
s a

rticl
e can also be located at

www.xm
l-jo

urn
al.

com

LISTING 1

LISTING 2

I M O R A E S @ A T L A N T A . G L E N A Y R E . C O M

AUTHOR BIO
Ian Moraes, Ph.D., a principal engineer at Glenayre Electronics,
has developed client/server systems for both the
telecommunications and financial services industries. Currently
he works on the architecture, design and development of a
unified messaging application.

15V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Software AG
www.softwareag.com/tamino

In this inaugural column I’ll discuss
OASIS and XML.org and their role in
helping XML industry specifications get
developed and used. I’m on the board of
directors of OASIS and am a member of
the XML.org steering committee help-
ing represent IBM. The opinions
expressed below are my own and don’t
necessarily express those of IBM or
other members of the OASIS board or
membership.

OASIS is the Organization for the
Advancement of Structured Information
Standards (www.oasis-open.org) and is a
nonprofit international consortium.
OASIS, previously known as SGML Open,
was founded in 1993, and as the older
name implies, much of its early activity
reflected SGML’s strong presence in the
document and publishing community.
With the ascendancy of XML and its
importance for business message for-
mats, the name change became impor-
tant. OASIS now has more than 100
member organizations, and recent
membership gains reflect this shift in
emphasis from documents to transac-
tions. We recently made a strong com-
mitment to our European members by
hiring a representative based in the UK.
Membership growth has accelerated in
recent months and we expect to hire rep-
resentatives in other parts of the world,
such as Asia Pacific, as suitable candi-
dates become available.

The “structured information stan-
dards” in the expansion of the OASIS
acronym currently refers to four tech-
nologies: XML, SGML, HTM and CGM.
CGM, the Computer Graphics Metafile,
is a format defined by ISO /IEC
8632:1992 for describing vector, raster
and hybrid (raster and vector) graphics
in a compact way. The CGM Open Con-
sortium (www.cgmopen.org) is an affili-
ate organization of OASIS and con-
sists of vendors and users of
CGM technology. Since
CGM isn’t based on
XML, I’m not going to
discuss it in detail
here. It’s likely that
OASIS will soon
have other affili-
ates that are dedi-
cated to using
XML for particular
industries. The ad-
vantage of being an
OASIS affiliate is that
you and your colleagues
can concentrate more on the
domain-specific work at hand rather
than getting overly involved with consor-
tium administration factors. An affiliate
does have its own board of directors and
bylaws, however, and thus lies some-
where between a completely indepen-
dent consortium and a technical com-
mittee.

One of the real jewels of OASIS is the
Robin Cover SGML/XML pages. These
pages include more than 3,000 docu-
ments that discuss the technology that’s
been developed for SGML and XML over
the last several years. Within these pages
you’ll also find descriptions of much of
the industry activity involving XML.
Robin lists the essential books to read
and has descriptions of public and com-
mercial software for XML, SGML and
related technology such as XSL.

One of the most exciting things to
happen within OASIS recently was the
formation of XML.org (www.xml.org),
an initiative to create a vendor-neutral
clearinghouse for XML resources. Typi-

cally these resources are DTDs or
schemas, but they might be

XSL stylesheets or
HTML pages. Nine

OASIS member
o r g a n i z a t i o n s
were the initial
sponsors of
XML.org. IBM,
Oracle, SAP and
Sun Microsys-

tems each con-
tributed $100,000

and Commerce
One, DataChannel,

Documentum, GCA and
SoftQuad each contributed

$25,000. The contribution level is
based on corporate revenues, not dedi-
cation to the initiative!

Right now, it’s very hard to find detailed
technical XML specifications and infor-
mation about work being done in indus-
try via a Web search. It’s important to have
an XML resource clearinghouse where

16 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

How XML industry specifications are being developed

X
ML is a significant technological achievement, but what’s it really good for when it comes to e-business and indus-
try applications? In these columns I’ll discuss how companies and consortiums are developing XML specifications for
a wide range of industries. Most of the hot activity these days is around using XML for messaging for business inte-
gration and business-to-consumer (B2C) and business-to-business (B2B) e-commerce. I don’t expect to discuss pub-

lishing in any depth, though some interesting work is going on with content distribution such as ICE and newspaper electronic
formats such as XML News, and I’ll probably talk about it in future columns.

OASISandXML.org

XML
 industry
insider

XML
 industry
insider

[WRITTEN BY BOB SUTOR

B2B B2B B2B B2B B2B B2B

B2B B2B B2B B2B B2B B2B

 B2B B2B B2B B2B B2B B2B

 B2B B2B B2B B2B B2B B2B

 B2B B2B B2B B2B B2B B2B

 B2B B2B B2B B2B B2B B2B

 B2B B2B B2B B2B B2B B2B

 B2B B2B B2B B2B B2B B2B

you can go to access the latest DTDs and
schemas and learn how they should be
used. The clearinghouse must be avail-
able to you from your Web brows-
er, but also for application
software that uses the
XML resources (think
of a program that
needs the latest
version of an XSL
stylesheet for a
transformation).

The physical
c l e a r i n g h o u s e
will be built using
the OASIS/XML.org
registry and reposito-
ry architecture. We fore-
see a global Web of reposi-
tories linked via a master registry
of the contents and metadata. So
XML.org will have a repository of
schemas and other resources, but there
will be compatible repositories out there
that are under the control of indepen-
dent organizations. These organizations
might want their own repositories so
they can control updates, versioning or
access control. Their repositories will be
compatible with that used by XML.org
itself, because they all adhere to the API
defined within the OASIS/XML.org reg-
istry and repository specification. While
there may be open implementations of
the repository, we also expect commer-
cial versions built on top of enterprise-
quality databases from vendors such as
IBM, Oracle and others.

You’ll be able to query the master
XML.org registry on the contents of all
the repositories within the Web. The
repository at the XML.org site will exist
for the convenience of those who don’t
wish to maintain their own installation.
The XML.org repository will also hold
the work done by OASIS technical com-
mittees and this leads to an important,
sometimes misunderstood, point about
the relationship between OASIS and
XML.org.

XML.org is an activity within OASIS;
it’s not a separate organization. In some
sense it’s a branding for much of the
XML activity that takes place within
OASIS. All “XML.org technical commit-
tees” are actually “OASIS technical com-
mittees,” and representatives of OASIS
organizations can participate in any of
the technical work done under the
XML.org banner. So while we say that
XML.org has the nine original sponsors,
it’s actually a resource and a benefit for
all 100+ OASIS member organizations.
The registry and repository technical
committee, for example, had existed for
several months within OASIS before

XML.org was announced. The XML.org
clearinghouse will be the result of the
technical work of many OASIS mem-

bers. It’ll also be influenced by the
work done within the

XML/EDI community
(see www.xmledi.org),

the Object Manage-
ment Group (OMG)
and others. Inci-
dentally, OASIS
and the OMG
(w w w. o m g . o r g)
have exchanged

memberships so
they can more easily

take part in, and advan-
tage of, each other’s tech-

nical work.
Part of the mission of OASIS is to be

an organization in which member com-
panies can come together and create
XML industry standards. In addition to
the affiliates I mentioned above, techni-
cal work can be done within technical

committees. In a process somewhat sim-
ilar to that in the W3C, interested parties
produce a briefing package of what they
hope to accomplish in a specified time-
frame. Once they get approval from the
OASIS board to proceed, the technical
work begins, perhaps with input from
work already done within member com-
panies. The goal is to eventually reach
the status of XML.org Recommendation.
We’re investigating a process by which
we can also award this status to high-
quality XML specification work done by
other consortiums. The tricky and per-
haps controversial part is deciding on
exactly what high quality means! One
thing that’s certain is that an XML.org
Recommendation schema must be writ-
ten using a standard description lan-
guage such as the XML DTD format or
the forthcoming W3C XML Schema lan-
guage. Compliance to real, open stan-
dards rather than a single company’s
XML vision is at the core of XML.org, and
that starts with how we’ll describe our
recommended specifications.

When you visit the XML.org site, you’ll
see that it’s described as the “XML Indus-
try Portal.” While I know that portal
sometimes gets overused these days, let
me explain exactly what we mean by

this. From the XML.org site you’ll first get
access to the XML resource registry and
repository. Since this isn’t in place yet,
the site has a catalog of XML DTDs and
schemas. Where there’s a description of a
specification within Robin Cover’s pages,
the catalog includes a link. We update
the catalog as new work is brought to our
attention, and the site has a form for
submitting work you wish to have listed.
The catalog will be the basis for populat-
ing the XML.org registry and repository
when it goes online early this year.

Via the Robin Cover pages and other
links, the XML.org site is a source of
timely information about the applica-
tion of XML in industrial settings. This
includes Robin’s daily news briefs about
XML, which are syndicated to XML.com
and other sites. The OASIS news page
provides an update on XML activities at
OASIS and its member companies. To
my knowledge, the XML.org calendar is
the most complete catalog of XML
industry events.

OASIS has just hired a managing
editor for the XML.org site and we
expect that this will lead to even
greater coverage of industry activities.
We plan to have industry-by-industry
descriptions of the major develop-
ment work on XML specifications. For
example, the financial industry page
will discuss the significance and sta-
tus of the FpML, FIXML and the
S.W.I.F.T. XML specifications. We also
plan to have technical articles about
XML specifications written by people
in the industries who are actually
doing the development. If you’re
interested in writing such an article or
have specific topics that you wish me
to discuss in future columns, please
contact me via the e-mail address list-
ed below.

In my next column I’ll discuss the
work taking place within the joint
UN/CEFACT and OASIS Electronic Busi-
ness XML initiative (www.ebxml.org).
After that, I’ll look at standards work
related to EDI and XML, and start inves-
tigating XML activities in specific indus-
tries.

17V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

S U T O R @ S U T O R . C O M

Part of the mission of OASIS is to be an
organization in which member companies
can come together and create XML
industry standards
‘‘ ‘‘

AUTHOR BIO
Bob Sutor is a member
of IBM’s XML Strategy
and Technology Team
and is chief strategy
officer of OASIS. While
a member of IBM’s
research staff, Bob
developed applications
and led advanced
technology projects
related to XML and
Internet publishing.

B2C B2C B2C B2C B2C B2C
B2C B2C B2C B2C B2C B2C
B2C B2C B2C B2C B2C B2C
B2C B2C B2C B2C B2C B2C
B2C B2C B2C B2C B2C B2C
B2C B2C B2C B2C B2C B2C
B2C B2C B2C B2C B2C B2C
B2C B2C B2C B2C B2C B2C
B2C B2C B2C B2C B2C B2C

XML

18 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

PRESENTING

XML
TO THE
WEB

PRESENTING

XML
TO THE
WEB

One of many
approaches to

developing
Web-based

applications

19V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Every problem in software development can be approached in

multiple ways. Graphical user interface (GUI) development is no excep-

tion to this rule. With increasing numbers of Web-based and e-commerce

applications around the globe, the greatest demand so far – which is grow-

ing every day – has been for thin clients or Web clients. The question is

whether XML can help in this area. The answer is yes, but only if it satis-

fies your solution requirements.

In this article we’ll see how XML can be used to develop Web-based
user interfaces. XML may present an elegant approach to Web UI devel-
opment, but it has to overcome the challenge of being able to work in
today’s Web browsers and be cross-browser compatible. This is the arti-
cle to read before you invest in XML for developing Web clients.

What Is a Web UI?
Generally speaking, a Web UI means a program that can be executed

within any entity that acts as a gateway to the WWW or the Internet. The
most common Internet gateways so far have been the Web browsers
such as Internet Explorer (IE) or Netscape Communicator. Because of
Internet bandwidth limitations and security constraints, most Web UIs
consist mainly of HTML pages. Anyone who has written HTML code or
scripts knows how difficult it can be to manage and maintain the code.
Moreover, it’s a real nightmare to support and maintain multiple ver-
sions of your HTML pages when customers ask for a different look and
feel to your presentations. Thanks to the latest Web technologies, such as
JavaServer Pages (JSP), Servlets and XML, you can provide a simple,
robust, scalable, maintainable and reusable programming model to gen-
erate static and dynamic contents for Web browsers.

Figure 1 shows an example of a Web-based system that generates
dynamic HTML. JSPs are used to receive HTTP requests from Web
clients. (The detailed architecture and functionality provided by JSPs is
beyond the scope of this article.) In brief, JSP is an extension of Servlet
technology that provides an easy way to build reusable, component-
based Web pages with dynamically generated platform-independent
content. JSP pages are dynamically compiled into Java Servlets that actu-
ally act as a Controller interacting with the business logic or data trans-
formation layer. The business logic layer can be implemented using
Enterprise JavaBeans (EJB). The data that is obtained from business logic
in XML form can be converted to HTML form using XML transformation
(XT) tools, as shown in Figure 2. The XT component applies XSL (Exten-
sible Stylesheet Language) business data to generate the HTML. The fol-
lowing section describes XML, XSL and XT in more detail.

XML-BASED UI?
How exactly does XML help in developing Web UIs? The answer to that

question lies in how XSL and XT actually work. XSL is used to specify rules
for transforming input XML files into HTML. Note that XSL can also be
used instead of HTML to convert from one XML format to another. Before
you begin defining rules, you must know the input XML and the output
HTML. Based on the output requirements, you can start defining tem-
plates or rules using the XSL specification. These rules define how to
process tags within XML documents. Once you’ve finished defining your
XSL rules, you can apply those rules to the XML document using one of the
XSL transformation (XT) tools. Several XT transformation tools or utilities
are available in the market (see references at the end for hyperlinks).

Figure 2 shows how XT generates HTML from XML and XSL inputs.
Typically, you can apply XT on your XML/XSL documents from the

command line or through JavaBeans or Java Applets. In the following
section we’ll see how to apply XT from the command line as well as in a
program to generate an HTML page.

Why Use XML in UI?
There are a number of reasons for application developers to be moti-

vated to use XML in their applications and for generating Web contents.
Owing to its self-describing and semistructured nature, XML can be
widely used to describe the metacontent of documents. It can be used for
publishing and exchanging database contents, and as a messaging for-
mat for communication between application programs. XML and XSL
together provide a clean separation between presentation and data. This
means you can have various XSL for the same XML data to produce vari-
ous HTML pages, each with a potentially different look and feel. This can
be useful for personalization and customization of Web applications. You
can also use XSL efficiently to set up different kinds of filters on XML data
to display or process only a subset of the data. Use of XSL doesn’t require
any special graphic components such as applets or ActiveX controls. This
helps to keep your Web UI lightweight and pure HTML.

In addition, XML documents can handle international character sets.
The XML 1.0 Recommendation is defined based on the Unicode charac-
ter set, which is crucial for developing global cross-enterprise applica-
tions in today’s world. In the future, you may not even have to apply the
XSLT transforms manually because the Web browser will render the XML
documents appropriately based on the specified XSL. In fact, IE 5.0
already supports this capability and Netscape is expected to provide this
ability in their next release. Following is an example that shows partial
XML data for a real estate application and its corresponding XSL for pro-
cessing the XML.

FIGURE 1 A design for a Web-based UI

Web Server

Web
Browser

get
post

html jsp

XT

xm
l

xsl

Servlet db

FIGURE 2 XML + XSL = HTML

XT

XSL

HTML

XML

XSL

XT HTML

[WRITTEN BY BHAVEN SHAH]

20 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

XML TAGS FOR REALESTATE.XML
<HOUSE>

<PRICE>150000</PRICE>

<BEDROOMS>2</BEDROOMS>

</HOUSE>

XSL RULES FOR PROCESSING THE XML TAGS IN REALESTATE.XML
<!-- For each HOUSE element contained in the HOUSES

document element, process the content of the

xsl:for-each as a template. -->

<xsl:for-each select="HOUSE">

<!-- The '.' context is now the "HOUSE" element -->

<TR>

<TD class="cell">

<!-- gets the text from the "PRICE" element -->

<xsl:value-of select="PRICE"/>

</TD>

<TD class="cell">

<!-- gets the text from the "BEDROOMS" element -->

<xsl:value-of select="BEDROOMS"/>

</TD>

<TR>

Why Not HTML?
You may be wondering why, if XML can be used to generate HTML,

you can’t write the same HTML directly yourself. The answer is that XML
is much more flexible and maintainable than simple HTML. HTML is a
simple markup language, with a fixed set of tags that are used only for
Web documents. Moreover, most of these tags pertain to the presenta-
tion of the document on the Web. There isn’t much support for extract-
ing data from within an HTML document in a flexible fashion indepen-
dent of its presentation tags. Thus the problem of limited flexibility can
be solved with XML.

With XML, you can define your own set of tags by means of a DTD
(document type definition). XML separates presentation and data and
allows dynamic data interchange. In addition, you can easily perform
data validation and represent complex data structures with rich rela-
tionships using XML. XML can be used to create much richer documents
than HTML.

Web browsers are lenient when they render HTML documents on the
Web. This means that even if some of the tags are ignored or handled
incorrectly, the browser doesn’t really complain. The information will be
displayed on the screen in a reasonable fashion. The human reader will
have to read it and make sense out of it. This will cause problems if you’re
developing complex Web applications. With XML, validating parsers can
be made responsible for generating well-formed and valid documents.

Another area in which XML can be more useful than HTML is for rep-
resenting metacontent or metadata. HTML has limited tags (such as
TITLE and META) for accommodating metacontent. In addition, these
tags can be used only within the HTML document. That means that it’s
not possible to search through the metacontent without downloading
the whole HTML document. XML’s various metacontent formats such as

RDF, CDF and OSD can be used to store the metacontent externally to an
XML file. This provides flexibility, extensibility and performance benefits
in e-commerce environments. Thus the benefits of XML far outweigh
those of simple HTML. In the next section we’ll work with a practical
example to see how to generate HTML content by using XML and XSL.

XSL and XT
Before you begin, make sure you’ve downloaded the necessary class-

es and packages for parsing XML and XSL and applying XT. In the exam-
ple James Clark’s parsers and XT packages are used for transformation.
Here, XML data is defined in a file called realestate.xml (see Listing 1)
and XSL rules are defined in realestate.xsl (see Listing 2). Assuming
you’ve installed the XT package in your C:\xt\ directory, one way to gen-
erate HTML would be from the command line using the following:

C:\xt> xt xml_file.xml xsl_file.xsl > html_file.html

In our example,

C:\xt> xt realestate.xml realestate.xsl > realestate.html

This would produce HTML code in realestate.html, which can be
directly displayed in the browser.

Now let’s see how you can achieve the same results programmatically
by calling XT from within a Java Servlet to generate HTML and send the
response back to the browser. In the code snippet in Listing 3 we create
a new instance of an XML parser and XSL processor. Then we set the
ServletOutputStream as the output stream for the XSL processor. Next
we set the XSL as the stylesheet input. Finally, we feed the XML input to
the parser and that’s it! The result of XT, which is an HTML, is streamed
as a ServletResponse back to the browser and the browser displays the
same HTML as shown in Figure 3.

The code in Listing 3 is the function that transforms XML to HTML by
applying XSL. This can be implemented as part of the servlet or as a bean
that will be called from the servlet. To keep the demo code simple, error
checking and exception-handling code is not shown in the listing.

So, What Is the Challenge?
So far we’ve seen how XML/XSL can provide an elegant approach to

dynamically generating rich Web contents. XML adds more flexibility,
reusability and maintainability to your presentation layer when com-
pared to pure HTML. But, as with almost every solution, this solution has
its own issues and challenges that can make it unsuitable for some appli-
cations. To start with, XML technology itself is immature. Standards and
specifications for XML and XSL are still evolving, and change frequently.
This means frequent updates to your XML document definitions, gram-

FIGURE 3 HTML generated after XSLT transformation

XML adds more flexibility,
reusability and maintainability
to your presentation layer
when compared to pure HTML

‘‘‘‘

21V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

VSI
www.vsi.com/breeze

22 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

mar and XSL templates. In addition, you may be required to keep up
with the rapidly changing versions of XML tools (such as the XML pars-
er and XT). Another issue with XSL is the learning curve for someone
who hasn’t worked with any type of markup language. Depending on the
type of XML you want to process, the XSL stylesheet can be quite com-
plicated. For example, if you have a highly nested and hierarchical data
structure that you want to represent as a complex tree, or an HTML table
as a Web page, XSL rules can be quite complex. Also, as the complexity
and size of the data grows, it will have an effect on the overall perfor-
mance of the transformation process using XSLT.

BROWSER AND XSL ISSUES
In developing a browser-based application, the normal tendency is to

assume that code that works in one browser will run under other
browsers or different versions of the browser. If you don’t want to be dis-
appointed at the end, get rid of that assumption! Netscape and IE, for
example, are different in the way they interpret some of the HTML and
JavaScript code. The best practice would be to test your application
(code) under both browsers with as many different browser versions as
you need to support. If you have a wide customer base that you need to
support, it would be a good idea to choose a browser type and version
that you want to support based on the lowest common denominator.
Different browsers have different ways of interpreting certain special
characters. You may face this problem even with XSLT because certain
versions of XT tools have special meaning for certain special characters
such as “%.” This means that if you have any of these characters in your
XSL, XT may fail to generate the correct HTML code unless the charac-
ters are encoded in a special fashion.

There are some subtle issues you may have to tackle while writing
XSL. For example, syntax that’s acceptable as XML may not be valid as
HTML. For example, if you have the following line in your XSL file:

<SCRIPT language="JavaScript" src="filename.js"></SCRIPT>

When compiled, using XT, the generated HTML would look like this:

<SCRIPT language="JavaScript" src="filename.js"/>

This is valid XML but not valid HTML and can cause severe problems
(since the script tag isn’t closed, your JavaScript functions will probably
not be available). Here’s one solution. By adding something between the
tags, the result will be correct.

<SCRIPT language="JavaScript" src="filename.js"><xsl:comment>some

text</xsl:comment></SCRIPT>

The foregoing line yields valid HTML as:

<SCRIPT language="JavaScript" src="filename.js"><!-- some text --

></SCRIPT>

There will be more issues and inconsistencies that you’ll encounter
once you begin coding for cross-browser–, cross-version–compatible
applications.

Conclusion
An XML-based approach is one of many approaches to developing

Web-based applications. XML provides promising and flexible technolo-
gy for developing Web applications that need to integrate seamlessly in
a heterogeneous environment (a typical e-commerce environment). The
XML/XSL model provides a useful way of representing or publishing
your enterprise data on a Web page. But you need to evaluate your
requirements carefully to avoid unexpected pitfalls. Various other tech-
nologies can be used along with XML/XSL to overcome some of the defi-
ciencies while exploiting the benefits of XML. These include JSP, applets
and ColdFusion.

One thing to keep in mind is that a technology that’s relatively less effi-
cient but open and easy to understand – and that provides more flexible
solutions compared with its competitors – will have a better chance to
win in the Internet world. Good luck!

XML References
XML Repository: www.xml.org
W3C consortium: www.w3c.org
Sun: http://java.sun.com/xml
IBM: www.alphaworks.com
OASIS: www.oasis-open.org
Webmethods: www.webmethods.com
Bluestone: www.bluestonecom
Sun’s ProjectX: http://developer.java.sun.com/developer/products/xml/

<?xml version="1.0"?>

<!DOCTYPE houses [

<!ELEMENT house (price,bedrooms,baths, garden?, extra_info?)
>
<!ELEMENT price (#PCDATA) >
<!ELEMENT bedrooms (#PCDATA) >
<!ELEMENT baths (#PCDATA) >
<!ELEMENT garden (#PCDATA) >
<!ELEMENT extra_info (#PCDATA) >

]>

<HOUSES>
<HOUSE>

<PRICE>150000</PRICE>
<BEDROOMS>2</BEDROOMS>
<BATHS>2</BATHS>
<GARDEN>no</GARDEN>

</HOUSE>
<HOUSE>

<PRICE>350000</PRICE>
<BEDROOMS>4</BEDROOMS>
<BATHS>3</BATHS>
<GARDEN>yes</GARDEN>
<!-- the attachment is the additional information about
this house -->

<EXTRA_INFO>see file:"house_2.txt"</EXTRA_INFO>
</HOUSE>
<HOUSE>

<PRICE>500000</PRICE>
<BEDROOMS>4</BEDROOMS>
<BATHS>3</BATHS>
<GARDEN>yes</GARDEN>
<!-- the attachment is the additional information about
this house -->

<EXTRA_INFO>see file:"house_3.txt"</EXTRA_INFO>
</HOUSE>

</HOUSES>

<?xml version="1.0"?>

<!-- Sample of styling in an imagined realestate document. -->

LISTING 1 REALESTATE.XML

LISTING 2 REALESTATE.XSL

B H A V E N @ Y A H O O . C O M

AUTHOR BIO
Bhaven Shah, a Sun-certified Java programmer, has more than five years’ experience in
object-oriented programming with a focus on Java for the past three years. Bhaven’s expertise is
in developing distributed component-based architectures and GUIs, with a current emphasis on
design and development of enterprise-wide Web-centric applications. He holds BS and MS degrees
in computer science.

<!-- Note the XSL namespace declaration. -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/XSL/Trans-
form/1.0"

xmlns="http://www.w3.org/TR/REC-html40"
result-ns="">

<!-- The root template... processing begins here.
The root is not the document element, but the node
above the document element that can also have com
ments, and processing instructions. -->

<xsl:template match="/">

<HTML>

<HEAD>

<META http-equiv="Content-Type" content="text/html;
charset=iso-8859-1"/>

<META http-equiv="Expires" content="0"/>

<STYLE TYPE="text/css">

<!-- Create some CSS patterns that will match the
HTML elements created below. This illustrates
that CSS can be used with XSL. -->

BODY { font-size:10pt; }

.cell { font-size:10pt; }

.listingCaptions { font-size:18pt;}

.tableHead { font:bold;}
</STYLE>

</HEAD>
<BODY>

<DIV>
<!-- Call the child of the root, which is at least
the document element. Other children of the root
can becomments, and processing instructions. -->

<xsl:apply-templates/>
</DIV>

</BODY>
</HTML>

</xsl:template>

<!-- The template for the document element. This template
could be directly embedded in the template above, but
it's nice to break large templates up a bit. -->

<xsl:template match="HOUSES">
<!-- The '.' context is now the "HOUSES" element -->
<TABLE border="1" frame="border" rules="all" cell-
padding="2">
<CAPTION class="listingCaptions">Real Estate List-
ings</CAPTION>

<COLGROUP>
<COL width="30" align="right"/>
<COL padding-left="15"/>
<COL padding-left="15"/>
<COL padding-left="15" align="center"/>

</COLGROUP>
<THEAD class="tableHead">

<TD>Price</TD>
<TD>Num Beds</TD>
<TD>Num Baths</TD>
<TD>Garden</TD>
<TD>Extra Info</TD>

</THEAD>
<!-- For each HOUSE element contained in the HOUSES

document element, process the content of the
xsl:for-each as a template. -->

<xsl:for-each select="HOUSE">
<!-- The '.' context is now the "HOUSE" element -->
<TR>

<TD class="cell">
<!-- get the text from the "PRICE" element -->
<xsl:value-of select="PRICE"/>

</TD>
<TD class="cell">

<!-- get the text from the "BEDROOMS" element -->

<xsl:value-of select="BEDROOMS"/>
</TD>
<TD class="cell">

<!-- get the text from the "BATHS" element -->
<xsl:value-of select="BATHS"/>

</TD>
<TD class="cell">

<!-- get the text from the "GARDEN" element -->
<xsl:value-of select="GARDEN"/>

</TD>
<TD class="cell">

<!-- get the text from the "EXTRA_INFO" ele-
ment -->

<xsl:value-of select="EXTRA_INFO"/>
</TD>

</TR>
</xsl:for-each>

</TABLE>
</xsl:template>

<!-- Note how much smaller and manageable this is
compared to the equivalent raw HTML. -->

</xsl:stylesheet>

@param xmlInput source of xml
@param xslInput source of Xsl
@param out destination of outputIn the case of Servlet, it’s
the OutputStream obtained from HttpServletResponse
@return true if transform succeeds otherwise false.

public boolean transform(InputSource xmlInput, InputSource
xslInput, OutputStream out)

{
Parser parser = null;
String parserClass = "com.jclark.xml.sax.Driver";
try
{

// create a new parser instance
parser = (Parser)Class.forName(parserClass).newIn-
stance();

}
catch (Exception e)
{

e.printStackTrace();
}

// instantiate a new XSL processor instance
XSLProcessor xsl = new XSLProcessorImpl(parser);
ResultTypeHandlerImpl resultTypeHandler = new
ResultTypeHandlerImpl(xsl);
xsl.setResultTypeHandler(resultTypeHandler);

// set ServletResponseStream as the result type handler
resultTypeHandler.setOutputStream(out);
xsl.setStylesheet(xslInput);

try
{

xsl.parse(xmlInput);
return true;

}
catch (Exception e)
{

e.printStackTrace();
}
System.out.println("parsing failed...");
return false;

}

23V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

LISTING 3 CODE SNIPPET FOR APPLYING XT FROM JAVA PROGRAM

Download the
Co

d
e!

The
cod

el
ist

ing
for

thi
s a

rticl
e can also be located at

www.xm
l-jo

urn
al.

com

24 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

In this article I’ll discuss the fact that
XML enables applications to organize
and process information better on the
enterprise. For this application I refer to
Java technology for mail, servlets and
messaging.

Messaging
Messaging is an integral part of most

Internet-related applications because it
handles data better for easier transac-
tion management. It’s used in the enter-
prise to exchange data between two het-
erogeneous applications.

For example, data comes into the
enterprise through the Internet and
then is sent to the back-end ERP appli-
cation/system. The messages come via
HTTP and have to be processed into
specific formats for the appropriate
back-end system.

Data is either queued and sent to one
application listening at the other end of
the queue, or broadcast to multiple
applications wanting the same data. The
messages from the queue are read by
applications that process the message
and translate its content for the ERP
application.

Enterprise-wide applications have a
messaging layer that sits between the
Web server and the application servers
and facilitates the delivery of appropriate
messages to the appropriate servers.
When a message is delivered in a queue,
the queue acts as a buffer and holds the
data until the server services the request.
In addition, the messaging layer can have
transaction management built in that
would allow for the retention of messages
in case the application server crashes,
thus preventing the loss of critical data
for the enterprise. It also prevents the
handling of duplicate messages.

What Are These Messages and
What’s Their Format?

The following are messages that come
into the enterprise in various structures
or formats:

FLAT MESSAGES
In this format the data coming into

the enterprise isn’t structured. There’s
no relation between the various ele-
ments that form the content of this type
of message.

For example, data submitted through
a customer information form contains
various heads such as the name,
address, phone number, and so forth,
but there’s no hierarchy in this structure.
Each element qualifies itself and doesn’t
depend on the other for its existence.

HIERARCHICAL MESSAGES
When it comes to data in the hierar-

chical format, there’s a distinct relation-
ship between the various elements that
make up the data.

For example, an EDI message is made
up of segment groups containing seg-
ments that in turn contain data ele-
ments and finally data. Each segment
has to be within a segment group and
the data element has to be with the seg-
ment. These could be mandatory or
optional within their ancestor, but by
necessity their existence is based on the
existence of the ancestor.

Why XML? What Role Does It Play?
PLATFORM INDEPENDENCE

XML is platform independent. It can be
used as a medium to send data between
heterogeneous applications without each
application having to know about the
proprietary format of the other. If I have
two word processing systems that need to

transfer content between each other, they
could do so without knowing about the
other’s format since all they need to do is
structure data as XML and send it across.
Data could be qualified to be, for exam-
ple, para or lesson:

<PARA> This is a para</PARA>

<QUOTE> The early bird gets the

worm</QUOTE>

or more meaningfully based on the
application.

<NAME>Abc</NAME>

<AILMENT>def</AILMENT>

<PRESCRIPTION> List of

medicines</PRESCRIPTION> for a

doctor.

XML for Hierarchical Messages
Since XML is a structured language,

it’s a perfect fit for hierarchical types of
messages; as data can be easily mapped
to elements, the XML document, as a
tree structure, takes care of the hierarchy
maintenance. With an XML parser it’s
easier to extract difficult data from mes-
sages such as EDI because the parser
does the job of isolating the data. It’s easy
to figure out how many times a particu-
lar element occurs as a child of which
node in the tree. For example, in the case
of EDI it could be represented as:

<SEGMENTGROUP id=1>

<SEGMENT mandatory="true">

<DATA ELEMENT>abc</DATA ELEMENT>

</SEGMENT>

<SEGMENT mandatory="false"></SEG-

MENT>

</SEGMENTGROUP>

Let’s consider an EDI message (see
Listing 1). When an EDI message is
processed, it’s required to maintain the
EDI-specific tags as well as user-fed
data.

Process data in a simple and straightforward manner

XML has been used in applications as a means of passing data between heterogeneous applications, to provide metain-
formation over content and maintain structure in data. Simply put, if HTML is the language to display information,
XML is the language that can speak business terms or jargon.

XMLandMessaging

xml
 middleware

xml
 middleware

[WRITTEN BY SANDEEP M. NAYAK

V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

EDI is divided into segment groups
and segments, and each of the segments
as well as the segment groups is manda-
tory or optional. Each segment can be
repeated a number of times, indicated
as 99 for 100 times and 999 for 1,000
times, which means 100 or 1,000 is the
maximum.

XML plays a perfect foil to maintain
EDI- specific information and hold data.
One way in which an EDI message could
be transformed into an XML document
is to convert each of the EDI segment
names to element tags. The properties of
the segment, such as whether it’s
mandatory or optional, can be taken
care of in the DTD; a loop counter can
mention the number of times this
occurs and be placed as attributes for
the element. Identifiers can identify
each of the segments. The EDI separa-
tors could be placed in the element
attribute list as separator attributes for
each element.

Although an EDI message could carry
a DTD for ease of use, one could also use
standalone, well-formed documents.
Since the EDI structure itself doesn’t
have an overlapping hierarchy of seg-
ments, a standalone document is fine,
plus it saves the time of validating
against a DTD as well as keeping the EDI
message flexible. Since we detach the
message from a DTD, we could change
the format as and when required. We
just have to extract the right data and
push into the back end. In using DTDs,
there’s the overhead of changing the
DTD, then changing the document to
reflect the change. Instead, keeping the
document well formed removes the
overhead of maintaining DTDs and the
need to send two files to the client side
in case the EDI message is generated at
the client.

There’s a well-formed EDI message in
XML format in Listing 2. One could use a
DTD, parse the XML files and keep them

on the server as standalone XML files to
be downloaded on request. The data
could be populated in the elements and
sent back to the enterprise where, since
they’re standalone, they could be used
directly to extract the data and pump it
into the back-end systems.

XML for Unstructured/
Flat Messages

In the case of a flat format, like an
HTML form, the submitted data would
have to be structured explicitly into
XML, then processed. Sometimes this is
overkill if the amount of data is small,
because there’s the overhead of structur-
ing the message into a particular format,
parsing the document, then extracting
the message.

XML is an easy way to demarcate
data, but should be applied by consider-
ing the amount of data and whether it
has any structure.

One can have XML documents con-
form to a specific DTD, which means
that you can easily demarcate what doc-
uments are flowing into your system.
The demarcation of data can be done
using the document type. Hence the
data can be extracted and placed in the
appropriate queues to be handled by the
appropriate application server.

Figure 1 illustrates the architecture in
which the data to the enterprise could
be received either through HTTP or
SMTP.

USING HTTP
Through HTTP the data could come

in to the Web server, which would load a
servlet to service the request, then gen-
erate a Java Messaging object based on
the type of message and route it to the
appropriate queue.

USING SMTP
The messages could also come to the

enterprise through SMTP protocol in
which case the mail server would
receive the message. A mail-retrieval
service could be written via JavaMail
and be used to look up the mailbox on
the mail server for mail received. The
mail could contain headers that would
indicate the presence of a particular
type of message. The service could then
extract the message that’s sent as an
attachment and, based on the header,
push it to the appropriate queue to be
handled.

The advantages of this approach are
that when you can demarcate the mes-
sages, the following issues are resolved:
1. Since each message is handled by a

particular queue, if one of the appli-
cation servers goes down, the rest of

The messaging server divides the incoming messages (based on the document type) into different
FIGURE 1 queues that are being listened to by different application servers. These servers can handle those

types of messages.

Qu
eu

e
2

Qu
eu

e
3

From the Internet

Through HTTP Through SMTP

Web Server Mail Server

Messaging Server

Application

Qu
eu

e
1

Server 1

Application

Server 2

Application

Server 3

Load sharing or
hot standby server for

Server 1

Load sharing or
hot standby server for

Server 2

Load sharing or
hot standby server for

Server 3

The queue length can
be determined based on
the number of messages
of a particular type that
can be handled

The function of
messaging server is
 to push a particular
type of message to

a particular queue

25

x
m

l
m

id
d

le
w

a
r

e

26 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

the messages can still be processed.
2. You can invoke other application

servers for load sharing in case there’s
an increase in a particular type of
incoming message.

3. Log tracking and maintenance for
each type of message becomes easier.

4. It frees up the application server from
having to poll constantly for incom-
ing data to process.

5. It implements a “push” model to
account for which servers are sent
data, thus saving critical CPU time for
the servers.

Importance of Transactions in
Messaging

Having transactions built into the
messaging is an added advantage.
Should the application server that’s lis-
tening to the queue go down, the sec-
ond-level application server, working as
a hot standby, could connect to the
same queue and start picking up mes-
sages that weren’t handled or acknowl-

edged. Moreover, you could decide on
the type of service, whether it’s critical or
noncritical, based on the type of mes-
sage.

Most messaging systems have built-in
transaction processing so they can
cache unacknowledged messages and
send them back to the server once it
connects to the queue. The SpiritWAVE
implementation of Java Messaging, for
example, has such support.

The hot standby will constantly ping
the application server that’s servicing
the messages. When the server breaks
down, the hot standby will connect to
the queue and start servicing the mes-
sages.

Either the servers could handle the
processing of messages, or the (Mes-
sage) objects sent by the messaging
server could encapsulate the logic to
process the message data. In case the
objects encapsulate the logic, all the
message has to do is implement a
known interface that the server will use

to extract the data and connect to back-
end systems. These back-end systems
could be any of the following:
• A database
• A legacy application, in which case it

would have to format the data in a
specific format

• A dump to a filing system
• Another application waiting for the

data

Conclusion
XML has opened newer avenues to

processing data in a simple and straight-
forward manner. XML documents’
inherent property of maintaining struc-
ture has become the backbone of most
messaging systems and eased the need
to demarcate data and process each
type differently. XML is looked on as a
major technology in future messaging
systems.

AUTHOR BIO
Sandeep M. Nayak is a
software analyst for
International Object
Technologies in New
Jersey.

S M N A Y A K @ Y A H O O . C O M

<?xml version="1.0" standalone="YES"?>
<EDIMESSAGE NAME="STANDARD MESSAGE">

<UNH>
<BGM>Beginning of message</BGM>
<MSG>Message type identification</MSG>
<RCS>Requirements and condition</RCS>
<DII>Directory Identification</DII>
<RFF COUNT="counter value">Reference to other information-
al sources for this

message</RFF>
<RFF COUNT="counter value">Reference to other information-
al sources for this

message</RFF>
<DTM COUNT="counter value">

<CENTURY>19</CENTURY>
<YEAR>99</YEAR>
<MONTH>10</MONTH>
<DAY>01</DAY>
<HOUR>10</HOUR>
<MIN>23</MIN>
<SEC>21</SEC>

</DTM>
</UNH>
<SEGMENTGRP ID="1">

<PNA> Party Identification </PNA>
<ADR> Address of the party </ADR>

</SEGMENTGRP>

<SEGMENTGRP ID="2" COUNT="counter value">
<CTA> Contact Information </CTA>
<COM COUNT="counter value"> Communication Contact :-
Mode 1</COM>

<COM COUNT="counter value"> Communication Contact :-
Mode 2</COM>

<SEGMENTGRP>

<SEGMENTGRP ID="3" COUNT="counter value">
<DFN>Definition of the function </DFN>
<FTX COUNT="counter value" MAXCOUNT="100">Textual Infor-
mation </FTX>

</SEGMENTGRP>

<SEGMENTGRP ID="5" COUNT="counter value">
<SGU>Usage details Type 1</SGU>
<FTX COUNT="counter value"> Textual information</FTX>

</SEGMENTGRP>

<SEGMENTGRP ID="5" COUNT="counter value">
<SGU> Usage Details Type 2</SGU>
<FTX COUNT="counter value"> Textual information</FTX>

</SEGMENTGRP>

<SEGMENTGRP ID="13">
<AUT> Authentication Result</AUT>
<DTM> Date of authentication </DTM>

</SEGMENTGRP>

<UNT messcount="8" controlrefno="a unique no"> This is the
end of the message and defines the total count of segments
in the message as well as a control reference number of
the message.</UNT>

</EDIMESSAGE>

<!-- DTD for the attached EDI message -->

<!ELEMENT EDIMESSAGE (UNH,SEGMENTGRP*,UNT)>
<!ATTLIST EDIMESSAGE NAME #PCDATA #IMPLIED>

<!ELEMENT UNH (BGM,MSG,RCS?,DII,RFF*,DTM*,FTX*)>

<!ELEMENT SEGMENTGRP (PNA,ADR?) | (CTA,COM*) |
(DFN,FTX*) | (GRU,FTX*) |
(SGU,FTX*) | (FNT,REL?,(GIR,FTX)*)
(RFF,FTX*) | (ELU,(ELM,EDT)?,IMD*,GIS*,FTX*)
(MEA,FTX*) | (ELV,FTX*) | (CDV,FTX*)
(DRD,FTX*) | (AUT,DTM?)>

<!ATTLIST SEGMENTGRP (ID,COUNTER) #NMTOKEN #REQUIRED>

<!ELEMENT (UNT,BGM,MSG,RCS,DII,PNA,ADR,CTA,COM,DFN,
FTX,GRU,SGU,FNT,REL,GIR,RFF,ELU,ELM,EDT,
IMD,GIS,MEA,ELV,CDV,DRD,AUT) -- #PCDATA>

<!ATTLIST (COM,FTX,GIR,IMD,GIS) COUNTER #NMTOKEN #REQUIRED>

<!ELEMENT DTM (CENTURY,YEAR,MONTH,DAY)>

<!ELEMENT CENTURY #PCDATA>
<!ELEMENT YEAR NMTOKEN>
<!ELEMENT MONTH NMTOKEN>
<!ELEMENT DAY NMTOKEN>

LISTING 1

LISTING 2

Download the
Co

d
e!

The
cod

el
ist

ing
for

thi
s a

rticl
e can also be located at

www.xm
l-jo

urn
al.

com

27V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Silverstream
www.silverstream.com

DiveintotheXMLSpecification

28 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

XML: The Annotated Specification
by Bob DuCharme
368 pages, Prentice Hall

T
he name of the author of XML: The Annotated Specifica-
tion may sound familiar. Some of you may have heard of
him because of his contributions in the XML indus-
try. For others it’s probably because you’ve
just seen his name on the cover of this
magazine – Bob is writing the Stan-

dar Watch column. This book is an excellent
sample of Bob’s writing style and his ability to
simplify the concepts introduced by a com-
plex technology. I’ve never gone through
the complete XML specification; however,
like other language specifications, it’s not
for the average reader. I think Charles
Goldfarb puts it succinctly in his fore-
word to the book when he describes the
spec’s terseness: “For earth people – even
for most programmers – it’s a daunting
read indeed!”

Nevertheless, The Annotated Specifica-
tion is clear and at the same time objective
in its coverage of the XML spec. It is what it
says it is – a specification book. It simplifies and
clarifies the specification using pertinent exam-
ples, sidebars, tips and reviews of complex topics. It
serves as a general reference for the XML language and a
guide to the specification. The author goes through the specifi-
cation line by line and then expands on each concept by offering insight
into why the guideline/definition was created, what it means and how
it’s to be used.

This book isn’t meant for readers who are trying to write XML applica-
tions or learning the XML language and its relationship to other tech-
nologies such as Java. It doesn’t cover applications of XML in the indus-
try, XML tools, and so on. That’s not its purpose. The book is targeted to
advanced readers who want to understand the reasoning behind the
XML language and its pure definition. If you’ve never had a hankering to
read the specification, then you probably won’t get much out of this
book.

The first section of the book, “Annotation Specification,” consists of a
couple of chapters that introduce the book and the XML specification. I
believe these chapters will be useful to readers who aren’t interested pri-
marily in the specification. The information here may have been gar-
nered from other resources, but may not be available elsewhere in such
a comprehensive form. The author starts with the reasoning behind the
birth of XML. He discusses XML in relation to HTML and SGML and

what roles these technologies play in computing. This introductory
chapter has nothing to do with the specification itself, but will be of use
to most readers. Many of the concepts and XML components such as
XSL, XLink and Xpointer are covered along with XML’s relationship to
browsers and scripting. The author ends the chapter with a brief descrip-
tion of the purpose of the specification and the additional information

that this book has to offer.
Chapter 2 provides a preface to the W3C XML spec-

ification, and gives pointers on where readers can
pick up the specification, its versioning, notation

and syntax.
The next section of the book introduces

the XML specification. The origin, goals
and terminology of the specification are

described in Chapter 1. One of the most
useful features in this book becomes
apparent here as the author takes each
line of the specification and clarifies
words that may be ambiguous. He
clearly sets the context for the terms
and gives the reasoning behind them.

An example is the author’s explana-
tion of what “parsed data” means in the

context of the specification. Parsed data
isn’t data that has been parsed, but data for

the XML processor (defined in the specifica-
tion’s next paragraph) to parse. Earlier drafts of

the spec used the terms text and binary rather than
parsed and unparsed.

These types of explanations are invaluable for eliminating
confusion and ambiguity typically associated with language specifica-
tions.

Chapters 2–4 go over the main body of the specification and the XML lan-
guage. XML documents, their components, DTDs, logical structures and their
elements and attributes are covered in Chapters 2 and 3. Chapter 4 discusses
physical structures, including entities, and introduces XML processors.

Chapters 5 and 6 focus on XML processing. Chapter 5 discusses vali-
dating and nonvalidating processors and their use. Chapter 6 elaborates
the formal grammar rules for processing XML documents.

The remainder of the book comprises six appendices that provide fur-
ther sources of information and explanations on related topics. A con-
cise glossary for the terms used in the text is also provided.

A “specification” book isn’t something that most folks read cover to
cover and I’m no exception. However, it’s a great reference to have when
you need to know the meaning of various terms and concepts.

REVIEWED BY TIJA RAGAS

T I J A @ S Y S - C O N . C O M

BOOK REVIEW

29V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Activated
Intelligence

www.activated.com

In this column I’d like to present how
these two technologies, Java and XML,
can be combined to help you achieve
your own personal path to the promised
land. Some of the areas we’ll cover in
this column are:
• The use of XML files as deployment

descriptors for Java applications and
their use as more sophisticated forms
of property files

• The use and advantages of XML data-
bases as persistence storage for Java
applications and how Java programs
can leverage them

• The use of XML tagging to describe
the data content of JMS messages, i.e.,
a serialization and deserialization
strategy for JMS messages

• The use of XML to describe the ser-
vices provided by a mobile agent, i.e.,
the use of XML repositories as inter-
face warehouses to discover the
behavior contained by mobile agents

If you’d like to see other topics in this
column, please e-mail me and I’ll try to
address them.

This article will introduce you to the
strengths and characteristics of the Java
and XML marriage. I’ll concentrate on
related technologies such as DOM, SAX
and DTDs – technologies that help pro-
vide a comprehensive solution using
XML and Java. In the following issues
you’ll see a lot more coverage on Java
itself.

Java & XML
The Java platform has evolved to

become the de facto standard when
deploying enterprise-wide Internet-

enabled solutions. Recently, the intro-
duction of the J2EE (Java 2 Platform,
Enterprise Edition) has helped to stan-
dardize the application server environ-
ment by providing a reference platform
for developers to build enterprise solu-
tions. J2EE has extension APIs that
address the development of distributed
enterprise solutions. The set of APIs
includes:
• JDBC for database access
• RMI for distributed Java communica-

tions
• Java IDL for distributed CORBA com-

munications
• Servlets for Web server-side applica-

tions
• JNDI for name and directory service

access
• JMS for asynchronous message com-

munications
• EJB for developing enterprise applica-

tion components in a distributed
fashion

In the J2EE environment the support
for IIOP over RMI (Remote Method
Invocation), the evolution of the JMS
(Java Messaging Services) and the evo-
lution of adapters for the JavaMail API
have created a stable communications
pipe in which information can be
exchanged reliably in a heterogeneous
environment. This communication pipe
provides a standard conduit for passing
XML information.

In a very short time XML has evolved
to become the de facto standard for data
manipulation between enterprise- and
Internet-enabled applications. The pro-
grammatic tools that have contributed

to the proliferation of XML technologies
in enterprise applications are parsers.
The two main parser technologies are
the DOM (Document Object Model) and
SAX (Simple API for XML) APIs. Other
XML technologies have contributed to
the acceptance of the language as well.
Some of the most popular technologies
are XSL for data viewing, DTD for data
verification, XML databases for perma-
nent storage, XML integration servers for
business-to-business interaction and
the evolution of HTML (4.0) to an XML-
compliant format. We’ll come back to
DOM, SAX and DTDs later in this article.

The Java – XML Highway
Let’s take the analogy of a highway. In

its most basic form you can think of the
Java platform as the provider of the
highway and XML as the cars. The Java
platform provides the bridges, intersec-
tions and tollgates for the cars to drive
through. XML provides a standard defi-
nition of what a car is. One definition is
that it must have four wheels, a chassis
with at least two doors, an engine, a
steering wheel and, at a minimum, one
car seat with a seat belt. While these are
concrete components, there are other
ways in which these technologies can be
combined to achieve ideal results. Imag-
ine the Java platform as the automobile
builder and XML as the blueprint for
building the car. Using this combina-
tion, the output produced by the Java
factory is controlled by the XML input
but the output itself doesn’t have to be
XML specific. However, if we combine
these two approaches, we can see how
XML can be used as the blueprint in the
Java factory, how the Java factory pro-
duces XML-defined cars and how those
cars can move from one location to
another using the Java-enabled commu-
nications highway. This highway can be
implemented using a combination of e-
mail, IIOP, JRMP or JMS (see Figure 1).

Working hand in hand to allow processing of information from external systems

W
elcome to Java and XML – the promised land. In the context of these two technologies the promised land pre-
sents a series of solutions in which the marriage between Java and XML has provided an optimal answer for
solving distributed multiplatform problems. But do XML and Java actually pave the road to data interchange
nirvana? Let’s embark on a journey to analyze and evaluate the hype and the reality of the solutions offered

by the combination of these technologies. Throughout this journey we’ll explore the architectural merits associated with
deploying these solutions.

JavaandXML–ThePromisedLand

[WRITTEN BY ISRAEL HILERIO

30 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

java
 and
 xml

java

 and
 xml

As you can see from these examples,
XML can be used as input or output for
another application while Java can be
used as the producer or consumer of the
data produced by XML.

Beyond Java
Up to this point I’ve concentrated

solely on Java and XML – after all, that’s
the title of this column! However, the
real power of XML is that its creation can
proceed from any producer application;
such applications need not be Java
based. Similarly, the consumption of
XML information can take place using
applications that aren’t Java based.
Legacy applications can also share
information with XML consumers and
producers by leveraging the adapter

design pattern and providing applica-
tions that transform the legacy data into
XML bidirectional streams.

Adapters allow applications or com-
ponents built for one system to be used
in another system. This is accomplished
by creating a wrapper interface that acts
as a translator of information between
the new interfaces and the existing class
interfaces.

One area where we can leverage XML-
based adapters for manipulating legacy
data is EDI transactions. EDI transac-
tions are hierarchical formatted files
that contain information encoded using
standard predefined tags. XML can be
considered a superset of EDI. By using
XML as such, we can store additional
information on how to handle the infor-

mation contained inside an EDI trans-
action (see Figure 2). This information
can consist of sender as well as recipient
information, and include details on the
priority of the information, special care
for instructions associated with the
transaction’s content and other items
not normally stored as part of transac-
tion information.

Back to Java
The Java language facilitates the cre-

ation of adapters by providing a plat-
form that can be used on heteroge-
neous operating systems for parsing
and creating XML documents. The two
main APIs used for this purpose are the
DOM and SAX APIs, introduced earlier.
The DOM API provides a treelike repre-
sentation of the hierarchical data. The
application code traverses the tree by
accessing tags contained in the docu-
ment hierarchy. Once the specific tag is
encountered, the attributes, data and
text associated with the tag can be
accessed. Developers using the DOM
are normally concerned with the hierar-
chy and structure of the document. The
SAX API provides an event-driven
mechanism that allows applications to
search for a specific tag independent of
the document hierarchy. One of the
characteristics of this approach is that
the only information available when a
tag is reached is the name of the tag and
its attributes. The textual information
associated with the tag isn’t accessible
directly. Developers using the SAX are
normally concerned with the tags con-
tained inside the document.

There are clear situations when you
need to use a hierarchical tree view of
the document. This will be done using
the DOM API. One of those situations is
when you need to search information
inside a document and the tags in the
hierarchy contain semantic informa-
tion. This would be the case if you were
looking for all the models of Ford trucks
that carry blue tones (see Figure 3A).
Just finding the blue attribute inside the
truck model won’t be particularly mean-
ingful. However, finding it inside the
Excursion, Expedition and Explorer lets
us know that these are Ford trucks with
blue tones (see Figure 3B). Notice that
the F-150 truck doesn’t carry any blue
attributes and thus isn’t part of the
resultset, nor are there any cars in the
resultset although the cars tag has a blue
attribute.

In some situations you just need to
know the occurrence of a tag. This is
done using the SAX API. One situation
in which the hierarchy of the document
isn’t of immediate importance is when

AUTHOR BIO
Israel Hilerio is a
Sun-certified Java
programmer with 10
years of programming
experience, including
three and a half in
Java. He holds Ph.D.
and MS degrees in
computer science and a
BS in computer
engineering.

31V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

FIGURE 1 The Java communications highway for XML

SAN JOSE

Architect
Service

JAVA FACTORY

XML ADAPTER

XML DATAXML DATAPROPRIETARY
FORMAT
CAT
DRAWING

JAVA ENABLED HIGHWAY
(JMS, JRMP,IIOP,E-MAIL)

XML
CAT
INFORMATION

XML
CAT
INFORMATION

XML
BUS

DEFINITION

XML
OBJECT
USAGE

DALLAS

FIGURE 2 EDI transactions and XML documents

EDI
TRANSACTION

EDI
TRANSACTION

PUBLIC
NETWORK

TRANSPORT

XML ADAPTER XML PARSER

RECEIVE
DOCUMENT

SEND
DOCUMENT

EDI
TRANSLATOR

XML
DOCUMENT

EDI
TRANSACTION

XML
DOCUMENT

EDI
TRANSACTION

LEGACY
APPLICATION

V I S IT U S AT www.XML-JOURNAL .com

there are key tags that can trigger the execu-
tion of separate processes. This would be the
case if you were looking for the Urgent
attribute inside any item in a purchase order
(see Figure 4). One of the items in the purchase
order marked Urgent could be computer
memory. It doesn’t matter that the memory
item is contained inside the computer equip-
ment hierarchy. What is important is that the
memory item has an attribute of type Urgent.
Finding the Urgent tag in any of the items will
allow the purchase order to be processed
through a priority queue.

The two previous approaches can be com-
bined to allow the distribution of work through
different process paths based on specific tags’
names or attributes (SAX API). This is similar to
the processing of urgent orders through a spe-
cialized queue based on the attribute informa-

tion contained inside the item tag. Once the
purchase order has been selected, the semantic
information contained by the document hier-
archy becomes valuable for processing the
content of the order (DOM API).

In this column you’ve seen one of the major
programmatic areas where Java and XML can
work together hand in hand to allow process-
ing of information from external systems. The
XML and Java technologies are parser based
and leverage document hierarchies and attri-
butes to retrieve semantic information about
the information contained inside the tag. Using
these two approaches you can build systems
that leverage workflow engines to tailor the
processing of information.

FIGURE 3 Ford models hierarchy is suitable for DOM.

FORD

MUSTANG

PROBE

TAURUS

ESCORT EXCURSION
•BLUE

EXPEDITION
•BLUE

EXPLORER
•BLUE

F-150

TRUCKS

(A) (B)

CARS
•BLUE

FORD

EXCURSION
•BLUE

EXPEDITION
•BLUE

EXPLORER
•BLUE

TRUCKS

FIGURE 4 Purchase order hierarchy is suitable for SAX.

PURCHASE ORDER

RECREATION

BICYCLE

SKATES

GO-CARTS

MEMORY
• URGENT

MONITOR

PRINTER

COMPUTER EQUIPMENT

I S R A E L _ H I L E R I O @ I 2 . C O M

Get Your Own
Subscription to the

Finest Technical Journals
in the Industry!

1-800-513-7111
www.sys-con.com

33V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Elixir Technology
www.elixirtech.com

34 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

Exce
www.odi.co

35V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

eleon
om/excelon

Let’s talk about what we’re going to talk
about in this column in the coming year.
We’ll discuss, for example, XML’s role in e-
business today, and new and exciting
events taking place in the world of XML.
And as they emerge, I’ll provide overviews
of specific new technologies and discuss
their impact on the XML industry. Our
focus here is on XML in e-business –
hence the moniker <e-BizML>.

I’d like to start by examining how the
term metadata is used in the industry
and how it relates to XML. We’ll look at
some of the common areas in distributed
enterprise applications that can leverage
XML and related technologies. We’ll also
look at an organization that helps fund
XML projects in the computing industry.
I’ll end with a review of the e-book for
this month – XML Pocket Reference.

Let’s Start with Metadata
Metadata is often referred to as “self-

describing” data. In other words, it’s data
that describes data. It defines a common
language that allows data to be shared
among people, systems, processes and
programs, resulting in more effective
communication. All organizations have
their own terms and definitions that facil-
itate communication. However, the same
term may mean something else in anoth-
er context. For example, a “chip” refers to
something edible (very much so) in the
food industry, and something different in
the electronics industry. At the same time,
different terms in different contexts may
be used to refer to the same entity. For
example, a “Customer” in one organiza-
tion may be a “Client” in another.

When different terms are used to refer to
the same data, interpretation and mainte-
nance of that data becomes complex.
Metadata defines a common language

used within an enterprise or an industry
consortium so that processes and pro-
grams within that enterprise (or industry
consortium) can communicate using a
common base for the data definitions. For
example, the title, release date and singer’s
name constitute metadata that describes a
music album or CD. The songs themselves
may be viewed as the content or the data.

A Metalanguage for Defining
Metadata

Markup languages provide a means to
document metadata in computing. XML
is a markup language used to create con-
ceptual documents in the form of charac-
ter strings. The format of the document is
defined by marking up the content of the
document based on a set of well-formed
rules. Metadata is used to define the
structure of an XML document or file. The
language rules are in the form of a DTD
(document type definition) that in turn
follows the rules of XML. As XML is used
to define other languages (such as DTDs),
it is thus, by definition, a metalanguage (a
language that defines other languages).

XML provides a much-needed stan-
dard in the way firms exchange and pre-
sent information over the Internet. It does
so by facilitating computer-to-computer
communication via the use of standard
data formats. These formats are standard
across a specific business realm or envi-
ronment. Metadata that’s used by various
industries can be used within XML to
define markup vocabularies. XML serves
as an enabling technology that facilitates
integration of structured and unstruc-
tured data for e-commerce applications.

Applying XML
Okay, XML is a neat technology that

allows us to communicate using standard

data formats. That doesn’t say much for
how it can contribute to business applica-
tions. In a nutshell, XML promotes an
extensible environment in which data
can be exchanged in a standard manner.
This can contribute to a variety of enter-
prise application areas. Following are
some of the areas in business computing
in which XML is currently making an
impact. They’re listed randomly, without
regard to any order of importance.
• Deployment descriptors for runtime: A

natural fit for XML is its use as a mecha-
nism for defining deployment descrip-
tors for an application’s runtime envi-
ronment. XML can be used to replace
the paradigm of configuration files that
are hard to maintain, static and not very
portable. Software components can be
deployed with accompanying XML
descriptors that offer more sophisticat-
ed runtime capabilities by using XML’s
metadata description capabilities. For
example, this mechanism has been
adopted by the Enterprise JavaBeans
deployment model.

• Information distribution: The Web
has created a revolutionary way of dis-
bursing information from disparate
sources to a multitude of participants
in a distributed environment. This is
because it offers a pervasive distribu-
tion channel by leveraging the Inter-
net. XML technology is based on the
premise that content and presenta-
tion should be separated when ex-
changing information. This makes it
easy to distribute the content and
leave the presentation of the content
up to the client application. Of course,
XML provides the mechanism (XSL)
for data presentation also. Neverthe-
less, end applications have the option
of processing the content without pre-
senting the data in a browser. DTDs
that accompany the data enable
applications to offer more structured
and “intelligent” information.

What you need to know about XML as a metalanguage

W
elcome to <e-BizML>! Some of you may be familiar with my e-Java column in SYS-CON Publications’ Java Devel-
oper’s Journal. I’d like to continue <e-BizML> in the same flavor by focusing on the business aspects of XML in the com-
puting industry. Similar to e-Java, I’ll offer my two cents on an XML (or related technologies) book in this and subsequent
issues. I want to make this column as interactive as possible and would appreciate any feedback from you, the reader.

XMLintheEnterprise

<e-BizML>
<e-BizML>
<e-BizML>

<e-BizML>
<e-BizML>
<e-BizML>

[WRITTEN BY AJIT SAGAR

36 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

• Enterprise data management: Enter-
prise applications require the exchange
of heterogeneous data; it may come
from different data sources, in the form
of various formats and transferred
using a variety of communication pro-
tocols. This leads to a substantial
requirement to integrate the data so
that applications can use it. XML pro-
vides a universal representation of data
for information exchange between
applications. It does so by facilitating
data sharing and communications
between different applications and cus-
tomizing the presentation of the data.

• Business transactions and data trans-
formation: Besides being the Web
standard for exchanging data, XML is
also becoming the standard for busi-
ness transactions. This is especially
true in legacy environments. For
example, whenever data needs to be
migrated between dissimilar systems,
data transformations are required.
XML offers a standard format for
transporting data in the middle tier.

• Business process workflows and data
integration: Business process workflows
consist of sub-workflows and processes
from various organizations within the
enterprise. This leads to a requirement to
integrate the data from these processes.
The data may be in different formats.
XML offers a viable option as an integra-
tion technology in that it facilitates data
interchange. Standardization of XML-
based workflow systems will ensure that
different workflow systems can exchange
business process information using XML
as a medium for data exchange.

• Knowledge management: XML acts as a
facilitator in knowledge management
by coordinating the interpretation of
disparate data. XML DTDs provide a
mechanism for modeling knowledge as
well-formatted structures. The extensi-
bility of XML and the flexibility of DTDs
enable application developers to trans-
fer knowledge between different appli-
cations using standard data interchange
formats. This also enables applications
to export data from existing legacy doc-
ument formats and to extend these doc-
uments by wrapping them with meta-
data, which is defined using XML.

• Searching and pattern matching: XML
enables information to be accessible in a
highly structured form. Its extensibility
lets applications define custom tags that
enable more sophisticated and complex
searches. Again, the mechanism for this
is the metadata that can be expressed

using XML. XML’s enabling the data to be
described in a hierarchical structure also
enhances the capabilities to recursive
searches, parametric searches, and so
forth.

• Application integration: XML provides
the infrastructure for inputting and
outputting documents containing
metadata. This metadata promotes a
common vocabulary for data inter-
change between different applications,
thus enabling them to integrate with
other applications. XML also facilitates
information aggregation by defining
common data formats in which infor-
mation sources can receive and aggre-
gate data from various sources.

• Personalization and content manage-
ment: XML enables presentation of
customized content for different users,
depending on their preferences and
business interactions. XML enhances
the personalization capabilities of e-
commerce applications because it’s
very effective in managing structured
information. Indeed, that’s the salient
functionality offered by this technolo-
gy. Thus XML can be used for creating
and managing data structures that can
be customized effectively for different
users. The structures can be reused in
different environments, which makes
any proposed solution inherently scal-
able. In a similar manner, XML sup-
ports data syndication, content repli-
cation and management.

• Messaging and data transport: A mis-
conception regarding XML is that it’s
also a means for data transportation. A
more accurate description of the role
played by XML in data transportation is
that it facilitates the definition of com-
mon message formats that allow mes-
sages to be exchanged between differ-
ent applications. Consequently, XML
can make use of exchanging transport
protocols for data interchange.

Funding XML Projects
Although XML as a new technology has

garnered all the hype typically associated
with computer-related technologies, the
computing industry is still struggling with
areas in which XML can be leveraged to
provide solutions. Since XML impacts
several areas of computing, several inno-
vative ideas for leveraging its capabilities
will start emerging in different organiza-
tions within a company. When a technol-
ogy is at such a stage, it always helps if it
finds a patron who will nurture ideas and
help them grow. And it always helps if the
patron backs this up financially.

One organization that helps fund XML
projects is XMLFund, a venture fund in
Seattle formed in 1999 by David Pool, a
veteran in Internet start-ups. I hope to
interview David in a forthcoming issue of
XML-J so readers can learn more about
the fund and its mission. This organiza-
tion plans to invest exclusively in compa-
nies that are working with XML technolo-
gy. It’s based on the same principles as
the Java Fund, an organization funded by
California-based Kliener Perkins Caufield
& Byers that focused exclusively on Java
technologies. Some of the companies
that have been funded by XMLFund are
Nimble.com, Digital Counterpart, and
PhotoTrust.com.

Marking Up
XML, in my opinion, is going to be a

key technology that will help the com-
puting industry meet the demands of e-
business for the next generation of com-
puting. Its acceptance or rejection will
depend heavily on how XML standards
mature in the next year and how widely
they’re accepted. I hope this column
helps you understand the role, develop-
ments and acceptance of XML in e-busi-
ness in the years to come.

<e-book>
This month’s XML book, XML Pocket

Reference by Robert Eckstein, is the first
one I’ve looked at in O’Reilly & Associ-
ates’ Pocket Reference series. At first
glance it’s what it says it is – a small,
pocket-sized reference that’s easy to
carry in your pocket or organizer. It’s a
well-organized and concise reference
for basic XML concepts. After a brief
introduction to XML and its relationship
to HTML, the author defines XML termi-
nology and the basic structure of XML
documents. Chapter 2 is a reference to
XML itself; Chapter 3 serves as a refer-
ence for DTDs. The remaining chapters
cover XSL, XPointer and XLink. The cov-
erage is concise, to the point, and writ-
ten in a clear, easy style.

Pocket Reference is an introductory
text for the reader new to XML. It may
also serve as a reference when you’re
going out to a technology discussion
and want some conceptual clarifica-
tions. To my mind, that’s what this book
should be used for. A reader familiar
with XML will probably need a reference
with more detail, examples and detailed
descriptions. However, at $8.95 and 107
pages, you won’t lose anything by keep-
ing this one handy as a quick reference
to XML concepts.

A J I T @ S Y S - C O N . C O M

37V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

XML-J: Would you care to comment on the state of
XML technology in the industry today?
Jaenicke: The official “state” of XML is that it’s been
accepted, but I don’t think it’s well understood. Most IT
managers and project leaders have XML on some check-
list somewhere, but few have yet incorporated IT in a
strategic way.

What’s most interesting about the state of XML – past,
present and future – is the direction that it’s moving.
Technology (consider Java) usually comes from the Ivory
Tower, and it eventually pushes its way into the main-
stream. XML is completely different – it has actually been
pulled into the mainstream. And the speed at which it’s
being accepted is also head-turning.

XML-J: I heard you have some very exciting news
to share with our readers regarding eXcelon.
Jaenicke: eXcelon Corporation, formerly Object Design,
Inc., changed its name in order to shift emphasis to the
fastest-growing part of its business.

XML-J: Does this reflect the market view that OO
databases aren’t going to survive in the B2B mar-
ket? Last year I was under the impression that
eXcelon was just a business unit spawned off by
ODI. Now it seems like you’re making XML servers
your main business.

Jaenicke: OO databases will certainly survive – Object-
Store is fabulous technology – but only in a limited sub-
section of the B2B market. We’re still continuing to sup-
port and grow that business, but you’re right about the
change of business strategy – eXcelon used to be a small,
start-up interest on the side. Now it’s the center of
eXcelon Corporation’s main business strategy.

XML-J: What advantage do you think eXcelon has
over the competition in terms of market strategy
and positioning?
Jaenicke: eXcelon Corporation has a unique differentia-
tor that’s based on our past successes. We believe any
solution – B2B or other – should be flexible and dynamic
in order to easily support changing business objectives.
Our B2B solution is designed to be dynamic from the
ground up. It’s integrated with your business process so
it’s possible to fully leverage any and all partners in a way
that complements your immediate needs.

XML-J: What does your product line consist of?
Jaenicke: Our B2B product line consists of three offerings:
a Dynamic Application Platform for building portals and e-
markets, a B2B Integration Server for enterprise B2B infra-
structure and eSolutions for industry-specific frameworks.

XML-J: How can our readers start using your prod-
ucts? What type of individuals do you think can
immediately leverage your technology?
Jaenicke: eXcelon B2B and B2C solutions can be used
today – many diverse groups have – check out our Web
site at www.exceloncorp.com.

XML-J: WebMethods is currently the name associ-
ated with the term B2B Integration Server. Are
you stepping on their turf? How does your
approach differ from WebMethods’?
Jaenicke: We certainly compete with their product. The
difference is our solution is dynamic, meaning you have
complete control over whom you work with and how you
work with them. eXcelon B2B doesn’t require specific soft-
ware to be installed on the partner’s end and doesn’t dic-
tate vocabularies or protocols, so organizations can work
cooperatively, not coercively.

XML-J: There’s a lot of buzz about XML servers
and portals. What exactly is an XML dynamic
application platform and how does it relate to
XML portals?
Jaenicke: A dynamic application platform hosts business
logic that’s built for change. Because of the extensibility of
XML, it’s possible to build and deploy applications using
dynamic data modeling. This is key for portals because
they’re information driven and that information – even
the format of that information – is always changing.

XML-J: Do you consider yourselves market
enablers or marketplace creators? For example,
will people use your products to create market-
places/exchanges on the Web? Or are you provid-
ing the marketplace and signing on parties into a
trading community?

Jaenicke: Both, because we have a range of product
offerings. The eXcelon Dynamic Application Platform is for
building any type of portal, including an e-marketplace.
With the eXcelon B2B Integration Server, we’re enabling
organizations to partner with anyone, including short-term
relationships with any e-market. And that’s where having
a dynamic solution becomes imperative – you can’t
coerce an established marketplace to install software or
use your protocol. You have to be able to walk up to a
desirable partner and say, “How do you do business?
Okay, we’ll work your way.”

XML-J: Are you participating in any standards
bodies, consortiums, etc.?
Jaenicke: Yes – we’re members of the World Wide Web
(W3C) Consortium, RosettaNet and OASIS.

XML-J: Do you plan to define any XML standards?
Jaenicke: Definitely not. We believe in being dialect
agnostic because there will always be new industry vocab-
ularies and protocols, as well as customizations. Look at
how often EDI was customized. For that reason we
believe the best approach is not to depend on there
being a single standard, but to support the extension of
standards.

XML-J: What vertical and horizontal market seg-
ments do you plan to target?
Jaenicke: Initially, eXcelon Corporation will be targeting
the insurance, retail, telecommunication and manufactur-
ing verticals, but I certainly expect to see that list grow
over time. Horizontally speaking, any company that’s
building a portal, auction site, e-market or any B2B infra-
structure will be interested in our technology.

XML-J: What areas do you think eXcelon will
expand into beyond its current offerings? What
kind of vendors do you see yourselves partnering
with?
Jaenicke: We’re partnering with enterprise application
integration (EAI) vendors as well as those that have XML
tools or expertise.

XML-J: How big a market are you going after?
How much of it do you hope to capture?
Jaenicke: Using various different predictions and stats,
we expect there to be $6 billion in spending on B2B soft-
ware infrastructure by the year 2003. I’d sound defeatist if
I didn’t say we were aggressively going after a large por-
tion of that!

XML-J: Where do you see the XML market going
in the next five years?
Jaenicke: At the risk of sounding antagonistic, I’d argue
that there really isn’t an XML market per se. XML is a tech-
nology and we’re on the brink of an explosion of tools and
applications that leverage XML’s unique benefits. Five years
down the road I expect XML will be fully built into virtually
every solution – you may not even know it’s there.

38 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

Interview...
with

COCO
JAENICKE
MARKETING MANAGER AND XML EVANGELIST
EXCELON CORPORATION

SYS-CON RADIO

C O C O @ E X C E L O N C O R P . C O M

39V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

SD 2000
www.sdexpo.com

40 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

What Can They Do?
Just as a compiler can process the source

code of a particular programming language
more effectively if the program’s data struc-
tures are declared up front, an XML proces-
sor is more efficient if it knows what kind of
data structures to expect before it begins
reading a document. XML 1.0 DTDs –
which I will hereafter refer to as DTDs,
although technically schemas express
DTDs as well – can have five or six kinds of
declarations, depending on whether you
consider comments to be declarations (the
XML spec is vague on this point):
• Element type declarations: An element

type is a named class of elements, such
as h1, img or p in HTML or para or lis-
titem in the DocBook DTD.

• Attribute list declarations: An attribute
list declaration lists the attributes for a
given element type. The attribute list
for HTML’s img element type includes
the src, alt and align attributes.

• Entity declarations: Entities name
collections of information that a DTD
or document can reuse elsewhere. An
entity may represent a single charac-
ter of text, a string of text or a com-
plete file sitting outside the DTD.

• Notation declarations: When a DTD
declares an external non-XML, or “un-
parsed” entity, it must identify the enti-
ty’s format. A notation declaration tells
the processor: “Here’s a legal format for
this document type’s unparsed entities.”

• Comments: These look just like they
look in HTML: <!-- like this -->. This is
information for the parser to ignore.

What’s wrong with these?

Weak Data Typing
The most common complaint about

XML from people who come to it from
the database and programming worlds
(as opposed to those coming from the
SGML publishing and HTML Web
design worlds) is the lack of data typ-
ing. When these developers declare or
define a named piece of information –
for example, a field in a database or a
variable in some Java or C++ code –
they’re accustomed to naming its type
and then assuming that the processing
engine underneath their application
will ensure that any information
stuffed into that slot conforms to that
type. Once they declare an XML Quan-
tity or RetailPrice element type, they
don’t want to write extra application
code to ensure that the strings be-
tween the start and end tags really are
integers and currency figures. Extra
error-checking code isn’t just annoy-
ing to write; it adds fat to the thin
clients that XML is supposed to be so
great for.

This wasn’t a big deal in the SGML
world because nearly every applica-
tion was a publishing application.
With XML’s popularity in e-commerce
development, data values like quanti-
ties and especially prices become
more important. Although XML 1.0
offers a few types that help constrain
attribute values, classic types such as
integers, real numbers, Booleans and
dates aren’t among the choices, and
application developers need them for
element content as well as attribute
values.

Document Structure Not Stored
in an XML Document

DTD declarations have their own syn-
tax that, despite using the “< >” angle
brackets, is quite different from XML doc-
ument syntax. Many newcomers to XML
ask why XML isn’t used to represent the
structure of its own documents. The orig-
inal answer was that XML was designed to
be completely compatible with SGML,
which had a larger base of applications
and tools than most new XML users real-
ize. These applications and tools played a
big role in XML’s initial jumpstart.

Since then, a revision to the SGML stan-
dard allows for legal SGML documents
without the DTD declarations used to
specify document structure – that is, to
have what the XML world calls “well-
formed documents.” If an XML document
with no DTD can still be a legal SGML doc-
ument, then the primary reason for using
SGML DTD syntax no longer applies.

Another argument against specifying
DTD structure with XML elements was
that it would be confusing to include
elements that describe other elements
right in there with the elements that
they describe. As it turned out, no one
does this anyway; schema documents
are always kept separate from the docu-
ments they describe, and documents
point to their schemas with a processing
instruction, a namespace declaration or
some other mechanism.

Using XML elements to describe doc-
ument structures has several benefits. It
makes these structures much easier to
develop because you can use any XML
editor to edit and manipulate them –
and I mean any XML editor, even the
lame ones that merely dump your docu-
ment to a visual tree and then write that
tree back out when you save your docu-
ment. (Paragraphs of text like the ones
you’re reading here are very cumber-
some to edit on such an editor, but a
schema document is naturally treelike.)

A look at the history of DTDs

O
f all the standards to accompany XML that are currently in progress at the W3C, few are more anxiously awaited
than the Schema standard – the specification that provides an alternative to XML 1.0 DTDs as a way to describe a
document’s structure. But what’s wrong with XML 1.0 DTDs? How many alternatives have been proposed, and by
whom? Why didn’t the W3C address these concerns in the original XML 1.0 specification instead of waiting until

now? I’ll answer those questions in this column, and in my next column we’ll look at the current state of the W3C Schema
Working Group’s unfinished proposal.

ReplaceDTDs?Why?

xml
 demystified

xml
 demystified

[WRITTEN BY ROBERT DUCHARME

41V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Application development is also easier
for documents whose structure is stored
in a well-formed XML document, because
applications have easier access to infor-
mation about document structure. SAX
and DOM, the two current XML API stan-
dards, offer very little to an application
that wants to check DTD information
such as an attribute’s declared type or
whether a particular element is optional.
With document structure definitions
stored in a DOM tree or triggering the
same SAX events that the document’s ele-
ments trigger, an application can find out
all it wants about that structure.

No Inheritance
A key reason for XML’s popularity

among system developers is its ability to
easily describe fairly complex data
structures. You don’t have to squeeze
everything into tables; if you like, you
can represent a data structure as a hier-
archical tree or, with the help of ID and
IDREF attributes, as a directed graph.

One of the great features of the
object-oriented world is the ability to
define data structures as extensions of
existing structures. With a well-designed
hierarchy of object classes inheriting
from each other, simple changes can
affect as much or as little of this hierar-
chy as you wish.

Developers with object-oriented ex-
perience appreciate XML’s ability to
define and manipulate complex data
stuctures, but they know that specifying
every detail of every data structure from
the ground up isn’t the most efficient
way to develop a system. They want a
way to base a new element type on an
existing one.

Potential Messiness of
Parameter Entities

A parameter entity is a string of text or
an external file that’s been named so
that it can be easily plugged into DTDs.
The former, an “internal parameter enti-
ty,” may contain a few attribute declara-
tions that you can reuse in the attribute
list declarations of several element
types; an external parameter entity
could be a file whose declarations will
be used in multiple DTDs.

To keep the design of complex DTDs
modular and maintainable, internal
parameter entities sometimes build on
each other in multiple layers, leaving you
with references to parameter entities
that have parameter entity references
themselves – and those may refer in turn
to parameter entities that contain more
parameter entity references. Because it’s
all implemented using string substitu-
tion, it can get messy quickly.

Specialized data structures suited to
each of these purposes would give
developers more robust components to
mix and match when building a docu-
ment type’s structure.

Weak Self-Documentation Facilities
As with XML documents – and, for

that matter, HTML documents – you can
put comments in DTDs that the proces-
sor will ignore by putting them between
the <!-- and --> delimiters. Like anyone
else defining data structures, DTD
authors have been encouraged to use
these comments to explain the use of
these data structures, but in keeping
with tradition, they often skimp on this
duty. Utilities do exist that compile
reports on DTDs by examining the sib-
ling and parent relationships of the vari-
ous element types, but serious automa-
tion of documentation generation can
only go so far because of the lack of
clues about each comment’s purpose.
Java, on the other hand, offers the
@fieldname notation to identify specific
fields of information in the header of a
class or method’s source code, making it
easier for an automated utility such as
javadoc to create useful documentation
easily with no human intervention.

It’s ironic that Java is better than XML
at allowing automated documentation
generation, for two reasons. First, a big
factor in the popularity of SGML was the
way it easily let developers create sys-
tems that automated the creation of
print, Web, WinHelp and CD documen-
tation. Second, the original idea for
XML, like Java, came from Sun; it was
Sun’s Online Information Technology
Architect Jon Bosak who put together
the W3C Working Group that devised a
simpler version of SGML that would
work more easily over the Web.

Replacement Candidates
Three groups of W3C member com-

panies and a mailing list devoted to cut-
ting-edge XML issues each assembled
alternatives to XML 1.0 DTDs and sub-
mitted them to the W3C. Each proposal
addresses some or all of the problems
described here. Just as schemas express
DTDs as much as the SGML-like XML
1.0 style does, XML 1.0 DTDs also quali-
fy as “schemas,” but in common practice
people refer to the XML 1.0 way as
“DTDs” and the new ways as “schemas.”
In addition to the W3C’s Schema pro-
posal, you may have heard of eight other
schema proposals, but really only four
were submitted – other names refer to
earlier names or subsets of these four.

A group of eight authors, five of whom
worked for Microsoft or DataChannel (a

Redmond company that’s done a lot of
XML work with Microsoft) submitted the
XML-Data proposal to the W3C on Janu-
ary 5, 1998, making it the only proposal to
predate XML’s ascent to Recommenda-
tion status. A simplified version of XML-
Data known as XML-Data Reduced, or
XDR, was submitted to the W3C on July 3,
1998. On Microsoft’s Web site XDR is also
known simply as “schemas,” with no
mention of its full name, greatly adding
to the confusion over schemas. Just
remember that when Microsoft literature
describes the use of schemas with IE5 or
BizTalk, they mean XDR.

Microsoft, IBM and independent con-
sultant Tim Bray submitted the Document
Content Description (DCD) schema pro-
posal on July 31, 1999. It expresses docu-
ment structure using the XML-based
Resource Description Format (RDF).
While neither Microsoft or IBM has shown
any interest in following up with DCD or
even RDF since then, Object Design’s (now
eXcelon Corporation) eXcelon product
still uses the DCD format to store its own
schemas.

Before e-commerce software devel-
opers CommerceOne acquired Veo sys-
tems, developers at Veo submitted
“Schema for Object-Oriented XML”
(SOX) to the W3C on September 9, 1998.
True to its full name, SOX makes map-
ping between element type declarations
and object-oriented data structure defi-
nitions simpler and more straightfor-
ward than its predecessors do. The SOX
proposal’s frequent use of the term elec-
tronic commerce gives another clue
about what kind of application develop-
ment concerns drove its design.

Finally, the xml-dev mailing list that
gave the world the Simple API for XML
(SAX, the standard event-driven API to
XML documents) also submitted the
Document Definition Markup Language,
or DDML (also known as “XSchema” and
“XSD” along the way), on January 19,
1999. Although no one ever implement-
ed it, DDML indicated to the W3C where
an important group of XML developers
saw the priorities in schema language
development.

After receiving these proposals, the
W3C took authors and editors from each
of them and assembled a working group
to put together their own schema propos-
al. After publishing a requirements docu-
ment in February 1999, they released the
first draft of their two-part proposal in
May and the most recent in December. In
my next article we’ll take a look at some of
the features in the W3C’s proposal.

D U C H A R M R @ M O O D Y S . C O M

AUTHOR BIO
Bob DuCharme is an
assistant vice president
at Moody’s Investors
Service, where he
oversees the
implementation of
SGML and XML systems.
The author of XML: The
Annotated Specification
published by Prentice
Hall, Bob received his
master’s degree in
computer science from
New York University,

42 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

BUILDING
DISTRIBUTED
APPLICATIONS WITH

CORBA
AND XML

BUILDING
DISTRIBUTED
APPLICATIONS WITH

CORBA
AND XML

Can these
technologies
benefit from
each other?

43V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

XML and CORBA are key technologies for building distributed sys-

tems, but both have evolved separately by addressing different needs of

content management and distributed applications. This article illustrates

how these technologies can benefit from each other.

XML
XML and related specifications are addressed on the W3C Web site

(www.w3c.org) and in other articles in this journal. This section looks at
the structure of an XML application as depicted in Figure 1. The entity
manager reads XML documents from some virtual storage – a database,
a file or some other mechanism – and creates XML entities, a term used
to describe XML elements. This data is passed to an XML parser, which
can optionally validate the document using either the DTD or, in the
future, one of the semantic specifications (e.g., DCD, RDF). The applica-
tion code accesses this data using the DOM or similar API mapping to
some programming language to process the data. Since XML today is
still about syntax, this code contains the logic needed by the semantics
to make meaningful use of the data. As seen in Figure 1, XML doesn’t
have transport built into it. Availability of a transport facility is thus a
requirement for building a distributed XML application.

CORBA
The common object request broker architecture (CORBA) is a specifi-

cation by the Object Management Group (OMG). Figure 2 depicts the
structure of a distributed application built using CORBA. Objects are
described using the Interface Definition Language (IDL) and are distrib-
uted on a communication bus, the Object Request Broker (ORB). These
objects are then implemented in a programming language, typically Java
or C++, and the ORB transparently handles all network, platform and
language issues. Additionally, the objects can be made transactional,
secure, and so forth, using CORBA services. Other vendor-provided tools
help in the management and administration of these objects, enabling
the development of a large-scale distributed system. (Thousands of such
CORBA applications have been deployed all over the world.)

A distributed application consists of three logical components – data,
logic and transport. CORBA ties these three components together in the
form of distributed objects in which the logic is implemented using
some OO language. The data is tied to the transport and transferred in
binary form between the client and the server. The familiar function call
paradigm is used to invoke methods on remote objects transparently. In
contrast, XML is only about data, which is represented as text and not
inherently tied to any transport protocol. It can be carried over any
transport protocol that’s capable of transporting textual data. The XML
programming model consists of walking a parsed XML document and
taking action based on the elements encountered. Using XML for data
gives us the ability to describe arbitrarily complex data types, build
loosely coupled systems, easily transform data from one form to the
other and easily display data in browsers. XML parsers are available for
most languages and operating systems; thus it’s easy to embed a parser
with an application. XML support is also present in the popular
browsers, giving developers the ability to display XML data. CORBA has
been used successfully to interface with legacy and ERP systems. Using
XML instead of IDL types may, in certain cases, make this integration
even easier. Many ERP vendors have pledged XML support in their prod-
ucts, which would make the use of XML even more attractive.

A distributed system that uses CORBA for distribution and XML for
data gives us the best of both worlds, and at the same time builds on two
open industry standards. The following section looks at the specifics of
how this integration can be achieved.

Integrating XML and CORBA
There’s some commonality in the concepts of XML and CORBA, as

illustrated in Table 1.
XML documents, which are textual in nature, define two popular pro-

gramming APIs:
• The Document Object Model (DOM) API defined by the W3C: This API

provides access to the XML document independent of the vocabulary
of the document, that is, the API methods are generic document
methods. It creates a full document object from an XML document,
and thus may require substantial space if you’re dealing with large
documents.

• The Simple API for XML (SAX) API: This is an event-driven API and
only the sections of the document that are of interest are loaded and
presented for use.

[WRITTEN BY NICK SIMHA AND DERMOT RUSSELL]

FIGURE 2 CORBA architecture

ParserCorba
Object

ParserCorba
Object

ParserCorba
Object

CORBA Services –
Transactions, Security,

Events...

Vendor provided tools –
manageability,

administration,...

Object Request Broker (ORB)

FIGURE 1 XML application architecture

Application
Logic

DTD

Parser DOMEntity
Manager

TABLE 1 XML and CORBA: Common concepts

CONCEPT XML CORBA
Data XML Document CORBA Primitive types, Structure, Sequence,

Any, DynAny, value types

Type Specification XML DTD, XML Schema CORBA TypeCode

Namespace XML Namespace CORBA Namespace

44 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

As both APIs are generic in nature, an alternative approach would be
to provide an API in which the vocabulary of the XML document is
mapped directly in the API. For example, the document is accessed
directly using the element and attribute names that appear in the docu-
ment. This way, the semantics of the XML document are visible to the
code that manipulates it, resulting in greater legibility.

The interfaces of CORBA objects and the types of data they can
manipulate are defined using IDL. Thus the integration of XML with
CORBA must be expressed using IDL types. However, it’s possible to per-
form this transformation dynamically when IIOP-compatible structures
can be created directly from XML documents.

IDL provides standard primitive data types along with structured and
aggregate data types and variable types in the form of the CORBA Any
(and DynAny). IDL distinguishes between object types and value types
as noted in the sidebar below.

It’s not desirable to produce an XML IDL API using CORBA object
types. This would imply that the XML document is encapsulated within
a CORBA interface, which would be inefficient since the document is
accessed in a remote fashion.

It’s more desirable to use either value types or existing IDL data types
as a means of passing documents by value, since this would allow effi-
cient operations on the XML document. However, the value-types spec-
ification has only recently been ratified by the OMG, and few implemen-
tations of the specification are available. Thus the choice remains about
whether the integration of XML and CORBA should use value types or
map directly to existing CORBA data types.

Approach 1: SIMPLE APPROACH
This initial approach is the simplest one possible for passing an XML

document to a CORBA object and involves “stringifying” the XML docu-
ment.

struct XMLDocument

{

String dtd;

String document;

};

typedef sequence<XMLDocument> XMLDocuments;

interface MyObject

{

void invoke(XMLDocuments documents);

};

One advantage of this approach is that it’s easy to extend existing
object interfaces to support XML data. The disadvantages are significant
and are as follows:
• Inefficient use of space: In a distributed application the verbose XML

document is distributed over the network.
• Inefficient use of time: The XML document must be parsed at each

point of use.
• Not type-safe: There’s no way of validating the XML document at

transmission, and it must be validated at each point of use.

Approach 2: MAPPING XML TO IDL USING VALUE TYPES
This approach uses CORBA value types and is under review by the

OMG. It represents as much of the DOM API as possible using CORBA
value types. The value type, a new IDL construct, is a cross between the
existing struct and interface. It’s always passed by reference, but can
contain method declarations such as an interface.

Listing 1, taken from OMG Document 99-12-05, demonstrates the
value-type definition for a DOM Node. The Node type is central to the
DOM API, since the document, element and text sections of an XML
document implement the Node interface. As you can see, this API uses a
standard naming convention for accessing all parts of an XML docu-
ment.

Other Key DOM types are DOMString, NodeList, Document, Element,
Attr and Text. This approach is consistent with the standard DOM API;
however, the semantics of the XML document aren’t clear when using a
standard API. It’s also likely to be some time before such an approach is
practical, as the CORBA implementation of the value-type specification
hasn’t become common yet.

Approach 3: MAPPING XML TO CORBA IDL
This approach takes advantage of the IDL types currently supported

by existing CORBA implementations. It maps an XML document into
CORBA types before an operation is invoked, and converts the CORBA
types back to XML when they’re received by the receiving object. This
approach is network efficient and type-safe. Another advantage – the
semantics of the document are preserved when translated directly into
the CORBA structures used to encapsulate the document.

The examples that follow demonstrate the mapping between an XML
document and its associated CORBA IDL definition. This mapping could
be performed automatically given a DTD (or XML schema) for the XML
document in question.

XML documents are implemented as a hierarchical CORBA type using
a two-way mapping between XML and IDL and the CORBA Any. In this
case, the CORBA Any will always hold a CORBA structure, and the con-
tents of this structure depend on the XML document.

The mapping is detailed as follows:

MAPPING XML —> IDL
• An XML element maps to a CORBA struct and an appropriate primitive

type is used for the element value:

<element>

1.23

</element>

struct element

{

float _Value;

};

• An XML attribute maps to a CORBA string member of the struct:

<element color=‘green’ font=‘fixed’/>

struct element

{

OBJECT TYPES AND VALUE TYPES
When a CORBA object A invokes a method on a remote object B and passes an object type C to

object B, a reference to the object type C is passed to B. Object B can subsequently invoke methods
on C. These methods are remote invocations, since only a reference to object C was passed to B.

When a CORBA object A invokes a method on a remote object B and passes a value type C to
object B, the value of the object is passed to B. Object B can subsequently invoke methods on the
object. These are local invocations and thus very efficient.

It’s more desirable to use either
value types or existing IDL data types
as a means of passing documents by
value, since this would allow efficient
operations on the XML document

‘‘‘‘

45V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Object
Management

Group
www.omg.org

46 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

string color,

string font

};

<element color=‘green’>

1.23

</element>

struct element

{

string color,

float _Value;

};

• A single child XML element maps to a struct within the parent struct:

<element>

<child id=‘abc’/>

</element>

struct element

{

struct child

{

string id;

};

};

• A variable number of XML child elements of the same name map to a
sequence of structs within a struct:

<elements>

<element color=‘green’/>

<element color=‘blue’/>

</elements>

struct elements

{

struct element

{

string color;

};

sequence<element> _element;

};

• A fixed number of child elements of the same name map to an array of
structs within a struct:

<elements>

<element color=‘green’/>

<element color=‘blue’/>

</elements>

struct element

{

string color;

};

struct elements

{

element _element[2];

};

• A CORBA Type Code is produced to describe the newly defined structure
and forms part of the resulting CORBA Any.

• An object that uses an XML document can be defined in IDL as fol-
lows:

interface MyObject

{

void invoke(Any document);

};

MAPPING IDL —> XML
• Only struct, sequences, arrays and base-types are mapped.
• An XML Schema or DTD is produced from the CORBA Type Code.
• A structs member maps to all attributes except “_Value”, which maps to

the text value for element.
• Sequences and arrays map to multiple elements.

This type-safe and efficient approach takes advantage of the available
CORBA implementations. An example of mapping XML to CORBA taken
from the finance domain demonstrates the mapping of a stock portfolio
XML document to a CORBA IDL (see Listing 2).

Summary
In this article we discussed the benefits of using CORBA and XML for

building a distributed application and three approaches to integrating
XML documents with CORBA. While it’s possible to achieve integration
using a primitive approach – converting the XML document to a string
and passing this string to the object – little efficiency is achieved this way
and the power of CORBA isn’t leveraged.

The second approach, which attempts to leverage from the standard
DOM API to XML, presents a solution using the newly defined CORBA
value-type specification. While this solution is efficient and type-safe, it
doesn’t attempt to map the semantics of the document into the CORBA
value type.

The final approach achieves efficiency and type safety, and succeeds
in preserving the semantics of the XML document in the CORBA struc-
ture. It’s also possible to implement this approach with the currently
available CORBA implementations.

References
1. W3C Web site: www.w3c.org
2. OMG Web site: www.omg.org
3. Hemming, M., and Vinoski, S. (1999). Advanced CORBA Program-

ming with C++. Addison Wesley.
4. Slama, D., Garbis, J., and Russell, P. (1999). Enterprise CORBA. Pren-

tice Hall.

While it’s possible to achieve
integration using a primitive
approach – converting the XML
document to a string and passing
this string to the object – little
efficiency is achieved this way

‘‘‘‘

N S I M H A @ I O N A . C O M D E R M O T . R U S S E L L @ M A C A L L A . C O M

AUTHOR BIOS
Nick Simha is the Western region presales manager for Iona Technologies (www.iona.com). He holds a
master’s degree in computer science from the University of Missouri.

Dermot Russell is a senior XML software architect at Macalla Software (www.macalla.com), a Dublin-
based software developer. Dermot has a BS in applied computing and an MS in computer science.

47V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

XMLeadership
www.brainstorm-group.com

48 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

// module XMLValue
valuetype Node
{

// NodeType
const unsigned short ELEMENT_NODE = 1;
const unsigned short ATTRIBUTE_NODE = 2;
const unsigned short TEXT_NODE = 3;
const unsigned short CDATA_SECTION_NODE = 4;
const unsigned short ENTITY_REFERENCE_NODE = 5;
const unsigned short ENTITY_NODE = 6;
const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
const unsigned short COMMENT_NODE = 8;
const unsigned short DOCUMENT_NODE = 9;
const unsigned short DOCUMENT_TYPE_NODE = 10;
const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
const unsigned short NOTATION_NODE = 12;

private DOMString nodeName;
private DOMString nodeValue;
private unsigned short nodeType;
private Node parentNode;
private NodeList childNodes;
private Node firstChild;
private Node lastChild;
private Node previousSibling;
private Node nextSibling;
private NamedNodeMap publics;

// Modified in DOM Level 2:
private Document ownerDocument;

Node insertBefore(in Node newChild, in Node refChild)
raises(DOMException);

Node replaceChild(in Node newChild, in Node refChild)
raises(DOMException);

Node removeChild(in Node oldChild) raises(DOMException);
Node appendChild(in Node newChild) raises(DOMException);
boolean hasChildNodes();
Node cloneNode(in boolean deep);

// Introduced in DOM Level 2
// Modified for XML over CORBA from 'supports' to 'DOMsupports'
boolean DOMsupports(in DOMString feature, in DOMString version);

// Introduced in DOM Level 2
private DOMString namespaceURI;
private DOMString prefix;
private DOMString localName;

// Introduced for XML Over CORBA
sequence<Node> children;

};

<?xml version="1.0"?>

<Portfolio>

<Stock name=’TOI’ url=’http://www.toi.com’>

<Holding>

<Quantity>1000</Quantity>

<Price>45</Price>

<CurrentPrice>43</CurrentPrice>

<Value>43000</Value>

<Performance>-2000</Performance>

<Holding>

</Stock>

<Stock name=’PPP’ url=’http://www.ppp.com’>

<Holding>

<Quantity>3000</Quantity>

<Price>25</Price>

<CurrentPrice>30</CurrentPrice>

<Value>90000</Value>

<Performance>+15000</Performance>

<Holding>

</Stock>
<Portfolio>

struct Quantity
{

float _Value;
};

struct Price
{

float _Value;
};

struct CurrentPrice
{

float _Value;
};

struct Value
{

float _Value;
};

struct Performance
{

float _Value;
};

struct Holding
{
Quantity quantity;
Price price;
CurrentPrice currentPrice;
Performance performance;
};

struct Stock
{

string name;
string url;

sequence<Holding> holdings;
};

struct Portfolio
{

sequence<Stock> stocks;
};

Download the
Co

d
e!

The
cod

el
ist

ing
for

thi
s a

rticl
e can also be located at

www.xm
l-jo

urn
al.

com

LISTING 1

LISTING 2

49V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Evergreen
www.evergreen.com

Join 100% Java
Developers
More than 2,500 of your peers will be at JavaCon

2000, along with the industry’s most respected

technical experts, sought-after gurus and advanced

users, who will show you how to maximize Java for

the enterprise. Make 2000 your year! Dedicate

yourself to four days of the hottest Java techniques

thought by those who are defining Java’s future.

B U I L D I N G T H E N E W

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. SYS-CON Publications and Camelot Communications iindependent of Sun Microsystems.

Presented by: Produced by:

CONFERENCE:
September 24–27, 2000

EXHIBITION:
September 25–26, 2000

Santa Clara Convention Center
Santa Clara, CA

CONFERENCE:
September 24–27, 2000

EXHIBITION:
September 25–26, 2000

Santa Clara Convention Center
Santa Clara, CA

www.JavaCon2000.com

E N T E R P R I S E
Register

by AUG.18
and

SAVE $200!

BENEFITS OF ATTENDING
■ The tips and techniques you’ll learn

will help you do your job better.
■ Discover the new applications being

developed today that you’ll need
tomorrow.

■ Sessions are designed for users at
all levels, with special sessions just
for gurus.

■ Network with fellow software
developers as well as recognized
Java experts.

■ You’ll learn how Java is being used for
large-scale enterprise applications.

JavaCon 2000 is your only opportunity to

learn from the experts at Java

Developer’s Journal —

who best combine

technical expertise

and practical

vendor know-how.

Java Developer’s Journal
Puts a Twist on Today’s Hottest Topics

Every delegate receives
a FREE one year
subscription to
XML-Journal and a one
year free subscription to
Java Developer's Journal—
a $99.00 value

ARE YOU A JAVA GURU?
Why Not Join Our Faculty?
If you’re willing to share your unique
Java experience, please e-mail
stewart@camelot-com.com for details on
how you may join the faculty. Topics of
interest include but are not restricted to:
■ Java in the Enterprise
■ Embedded Java
■ Java Success Stories
■ Advanced Java Application Development
■ XML & Java
■ Java in the Industry/Java Business

Applications
■ Server-Side Java
■ Java Testing and Debugging
■ Object Oriented-Concepts and Design

with Java

Deadline: April 17, 2000
Acceptance: May 15, 2000

JAVA DEVCON 2000 TECHNICAL CHAIR
Joshua Duhl is a principal at
Stillpoint Consulting. For over
12 years he has worked with
companies using object
technologies including object

databases, application servers and object
development tools or with companies
developing products for the Internet and
Web. An industry analyst associated
with IDC covering object technologies and
emerging markets, Duhl was one of the
five original authors of the ODMG-93
ODBMS standard.

Take a Look at
What You’ll Learn:
■ Building Mission-Critical Applications

with Java
■ Advanced JFC/SWING Component

Integration
■ Real-Time Java
■ Designing High Performance

E-Commerce Systems with EJB
■ Combining XML and Java
■ Java 2 Platform, Enterprise Edition
■ Java Advanced Programming
■ Java Security
■ Java Runtime Internals
■ Building a Multithreaded Server in Java
■ Methods for Effective Java Unit Testing
■ Developing COM and MTS

Components in Java
■ Developing Multi-tier Applications

Using the Servlet API
■ Object-Oriented Analysis and Design

with Java
■ Dynamic Bytecode Generation with Java
■ Developing Large-Scale Applications

with Java and CORBA
■ JDBC Technology
■ 2D and 3D Graphics in Java
■ Designing Java Business Applications
■ Java and Legacy Systems
■ Using the Java Naming and Directory

Interface API
■ Java Gaming
■ Programming for Devices (J2EE)
■ Programming for the Desktop (J2SE)
■ Java Commerce
■ Using Java Agents
■ Jini and JavaSpaces
■ Java Testing and Debugging
■ Java Exception Handling
■ Garbage Collection Techniques
■ Using Java with UML
■ Writing Consumer Applications Using

Personal Java API
■ Smart Card Application Development
■ Database Integration with Java

TWO-DAY EXHIBIT
The full-scale exhibit hall will be packed
with leading vendors who will be on hand
to demonstrate the latest products and
answer your questions.

Exhibit Hours:

Monday, September 25,

12:00–6:30

Tuesday, September

26, 12:00–6:00

What Is Extensibility?
When we talk about XML’s extensibility,

we’re talking about the ability to dynami-
cally create new tags or attributes to a sin-
gle record. For example, consider a data-
base for an inventory of cars in which
each car has a make, model and price. If
you decide to add a used car to your
inventory, you may also want to record
the mileage. XML’s extensibility enables
you to create a new record for that car
with the additional attribute without dis-
rupting any of the other records.

Even more compelling is how easy it
is to include ad hoc, unstructured data
to an XML record. Since you can create a
new tag and extend a record at any time,
you can record a dent by adding a
<damage> attribute. You can even add
your daughter’s auto-savvy witticisms
with an <alexa> tag. The ability to easily
incorporate unstructured data is at the
heart of e-business because then you
can begin to leverage all the information
that’s not in a formal data-management
system. What percentage of information
on your hard drive or in your head can
be searched, cross-referenced or shared
with partners?

This isn’t possible with traditional
technology. In order to add a new
attribute to a record in a relational data-
base, you’d have to add a new column to
the entire table. This may be acceptable
if there are relatively few additional
attributes, but if every new business
partner (such as a car dealership) or new

product configuration (such as a new vehi-
cle type) demands different attributes, it
quickly becomes an unwieldy way to man-
age your e-business application.

The extensibility of XML also passes
the interoperability test. Since XML is
portable and an industry standard, it’s
the de facto format for data sharing
between applications over the Web and
across organizations. When an XML data
object is passed from one server to
another, the ASCII tree is parsed and the
application can extract the elements
and attributes it needs. If there are new
and unknown attributes, they’re simply
ignored. Compare this to what would
happen if a C++ or Java object contained
unexpected fields – you’d end up with
skewed data and memory leaks.

The extensibility of XML enables you
to add new fields and attributes to data
records at will, without fear of disrupt-
ing any other records or breaking appli-
cations. This is why XML is not just
another “EDI” and why it will succeed
where EDI failed. XML’s extensibility is
causing developers to think differently
about system design and to be less fear-
ful of the rapid changes that occur with
e-business.

E-Business Demands XML
Extensibility

The GartnerGroup defines the role of e-
business as follows: “E-business enables
and manages relationships between an
enterprise and its functions and process-

es, and those of its customers, suppliers,
value chain, community and industry.”
Successfully implementing e-business
applications requires leveraging informa-
tion assets from many different sources
and in many shapes and sizes – structured
and unstructured, familiar and propri-
etary. To complicate matters, this informa-
tion needs to be consumed by many types
of applications and users. XML is the ideal
solution to this “Tower of Babel” because
it’s simple, flexible and portable. It’s the
standard for e-business.

E-business applications are a new
breed of application. They require con-
stant change because corporations need
to deliver targeted products and services
to their customers faster than the com-
petition can. Organizations need to
work with partners over an extranet as
easily as with people down the hall. E-
business applications have to be able to
withstand new products, services and
partners without requiring rearchitect-
ing. XML’s extensibility is the key to
making this possible.

XML Makes Customization
a Breeze

Because of XML’s extensibility, appli-
cations can be customized to accommo-
date new requirements without any
code having to be rewritten. XML appli-
cations tend to be more like frameworks
that are dynamically customized by the
data model. In the car example above,
an application might list all the attri-
butes of a given vehicle and let you
query on any of them, but the car’s
description and the search menu
wouldn’t be generated until runtime. If
you wanted to add trucks to your inven-
tory, and now towing capacity is impor-
tant, simply extend the data record with

The extensibility of XML is revolutionizing e-business

XML:It’sthe‘X’thatMatters

2B or
 not 2B

2B or
 not 2B

[WRITTEN BY COCO JAENICKE

AUTHOR BIO
Coco Jaenicke is the
XML evangelist and
product marketing
manager for eXcelon
Corporation. She’s
played a key role in the
successful development
and introduction of
eXcelon, the industry's
first XML application
development
environment for
building and deploying
dynamic e-business
applications.

52 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

A
s XML survives its debutante ball and begins to be accepted by mainstream IT shops, it’s being put to work, creat-
ing excitement among CIOs with its extensibility. Having had first-hand experience with several next-generation
XML e-business application deployments, I’d like to describe how the extensibility of XML is revolutionizing e-busi-
ness, making it possible to finally develop applications that are flexible enough to keep pace with today’s con-

stantly changing business requirements.

that new attribute and the application takes
care of itself.

This concept can be applied to a variety of
different e-business application areas.
• On-line product catalogs or e-commerce

sites are constantly changing with new prod-
ucts or new departments. By extending XML
with new information, such as customer
comments or an auto-loan worksheet, the
Web site can accommodate changes without
redesigning data structures or destabilizing
existing applications.

• Business-to-business (B2B) extranets can
reap the same benefits. Many times when
businesses come together they won’t be
using the same semantic expressions to
describe the same information (for example,
one vendor may use “price” where another
uses “cost”). The various competing DTDs
already available virtually assure this.
Because of the portability of XML, the syn-
tactical problem of sharing data is separated
from the semantic problem, and because of
its extensibility, differences in semantics can
be accommodated as well. If a partner sup-
plies you with information about a car with a
“price,” you can extend the data object to
add a “cost” attribute and both your applica-
tion and your partner’s will continue to oper-
ate safely.

• Enterprise Application Integration (EAI) is
much simpler with XML. With EAI, adding or
upgrading a module can have a ripple effect
that destabilizes any connected system. For
this reason upgrades often have to be per-
formed across an organization in unison. For
example, new middleware has to be installed
on every server, much to the chagrin of every
MIS director. XML lets you extend data
objects to accommodate new modules with-
out breaking the old ones, so you can
upgrade servers asynchronously. This means
that if your growing automobile enterprise
gets a new accounting system that requires
you to track the date of every transaction,
you can add that attribute to every car with-
out worrying about disrupting your Web-
based showroom.

Conclusion
XML has received inordinate amounts of

praise and hype, most of it coming from the fact
that it’s portable, standard and – let’s face it – just
plain fun to use. XML has survived the initial
skepticism and is emerging as an essential tool
for e-business primarily because of its extensi-
bility. The extensibility enables applications to
turn on a dime, leverage structured and
unstructured data, and take many of the major
headaches and fears out of managing a major
MIS initiative. What more could you ask for?

C O C O @ E X C E L O N C O R P . C O M

V I S IT U S AT www.XML-JOURNAL .com

Meet JDJ EDITORSAND COLUMNISTS
Attend the biggest Java developer
event of the year and also get a chance
to meet JDJ ’s editors and columnists

Sean Rhody Editor-in-Chief, JDJ
Sean is the editor-in-chief of Java Developer’s Journal.

He is also a principal consultant with Computer Sciences Corporation.

Alan Williamson JDJ Straight Talking Columnist
Alan, the Straight Talking columnist of JDJ, is a well-known Java expert and

author of two Java books. A contributor to the Servlet API. Alan is the CEO of
n-ary Consulting Ltd., with offices in Scotland, England and Australia.

Ajit Sagar Editor-in-Chief, XML-Journal
Ajit is the founding editor of XML-Journal and a well-respected expert in

Internet technologies. A Sun-certified Java programmer, he focuses on
Web-based e-commerce applications and architectures.

Jason Westra EJB Home Columnist
Jason is the Enterprise JavaBeans columnist of JDJ and a managing

partner with Verge Technologies Group, Inc., a Java consulting firm
specializing in Enterprise JavaBeans solutions.

MEETING September 24-27, 2000
Santa Clara Convention Center

Santa Clara, CA

ADVERTISER URL PH PG

ACTIVATED INTELLIGENCE WWW.ACTIVATED.COM 919.678.0300 67

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM 65 532.4300 33

ADVERTISINGINDEX

EVERGREEN WWW.EVERGREEN.COM 480.926.4500 49

EXCELEON WWW.ODI.COM/EXCELON 800.706.2509 34,35

IBM WWW.IBM.COM/DEVELOPERWORKS 800.772.2227 68

JAVACON 2000 WWW.JAVACON2000.COM 212.251.0006 50,51

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 54,55

MICROSOFT WWW.MSDN.MICROSOFT.COM/EVENTS 59

MICROSOFT WWW.MSDN.MICROSOFT.COM/TRAINING 61

MICROSOFT WWW.MSDN.MICROSOFT.COM 63

OBJECT MANAGEMENT GROUP WWW.OMG.ORG 781.444.0404 45

SD 2000 WWW.SDEXPO.COM 800.441.8826 39

SEQUOIA SOFTWARE WWW.XMLINDEX.COM 888.820.7917 13

SILVERSTREAM WWW.SILVERSTREAM.COM 888.823.9700 27

SIMPLEX KNOWLEDGE CO. WWW.SKC.COM 914.620.3700 65

SOFTQUAD WWW.SOFTQUAD.COM 416.544.9000 2

SOFTWARE AG WWW.SOFTWAREAG.COM/TAMINO 925.472.4900 15

TANGO DEVELOPER’S JOURNAL WWW.TANGOJOURNAL.COM 800.513.7111 7

VSI WWW.VSI.COM/BREEZE 800.556.4VISI 21

XMLEADERSHIP WWW.BRAINSTORM-GROUP.COM 508.393.3266 46

XML DEVCON WWW.XMLDEVCON2000.COM 212.251.0006 8,9

53volume1 issue1

54 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

JDJ Stor
www.jdjs

55V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

e Spread
store.com

In each of these cases an application
emerged that exploited the potential of
the new technology to fulfill an unmet
need, powerfully and easily. For XML, e-
commerce is proving to be the killer
application.

Enterprise Business Integration
and the Emergence of XML

A fast-emerging driver for XML adop-
tion has been Enterprise Application
Integration (EAI) or, more accurately,
Enterprise Business Integration (EBI) –
the integration of data, applications and
processes across multiple functions in
the enterprise and beyond.

Before XML, companies had a diffi-
cult choice. They could either hard-code
point-to-point integration solutions,
creating the proverbial spaghetti, or they
could adopt a proprietary integration
solution and, with it, a proprietary
canonical data representation. Either
one restricted future options and creat-
ed an ongoing maintenance burden.
Through its openness, simplicity and
industry-wide support, XML provides a
sound and flexible underpinning for
integration solutions.

EAI has already raised the profile of
XML considerably. But many companies
have lacked the will or the urgency to
pursue a systematic approach to inte-
gration – and, consequently, to adopt
XML – until something came along to
give the business a huge push: e-com-
merce.

Creating a Well-Differentiated
E-Commerce Strategy

For many companies initial e-com-
merce implementations typically focused
on providing Web-based product infor-
mation with a secure order-entry module.
While these early efforts have allowed
companies to gain a toehold in e-com-
merce, they were inefficient and ineffec-
tive since they were disconnected from
the operational systems of the business.

Creating a well-differentiated e-com-
merce strategy requires the ability to pro-
vide unified information to a range of users
such as employees, customers, suppliers
and partners. Organizations must inte-
grate customer-facing components with
front- and back-office applications, as well
as with legacy systems. Furthermore, they
need to create and deploy integrated busi-
ness processes that differentiate the busi-
ness and add real value for the customer.

Those very demanding requirements
are certainly far beyond the capabilities
of any point-to-point integration solu-
tion. To put it simply, you can’t do busi-
ness-to-business e-commerce effective-
ly without EAI. And as the world rushes
to XML, you won’t be able to do EAI
effectively without XML.

The Role of XML in Business
Integration

XML fills a vital role in business inte-
gration by providing a generalized
mechanism for representing and struc-
turing information. XML is in fact a

“metalanguage,” which means it can be
used to define any set of constructs and
is hence inherently extensible. As a
result, XML provides not only a replace-
ment for HTML but also a flexible
framework for representing the struc-
tured data associated with databases
and application systems. Any data struc-
ture can be rendered as an XML docu-
ment.

Just as HTTP has become the stan-
dard transport protocol for Internet
computing, XML is rapidly becoming
the standard for data exchange. In its
earliest applications XML provided a
“more powerful HTML” for interfacing
structured data with Web-based appli-
cations. More generally, it’s also emerg-
ing as a flexible vehicle for storing,
manipulating and exchanging data of all
types across organizations, systems and
technologies.

The power of XML lies in its ability to
represent the data itself and to define its
structure and meaning. XML relies on
extensible text tags (or elements) to
describe data structures and formats.
Using XML, an organization can specify a
vocabulary of data elements in, say, a
customer-processing application such as
the name, street address, city/state/zip,
phone number and customer number.
Different applications can then identify
that data, interpret its attributes and then
use it appropriately.

DTDs and Schemas
Over the years there have been many

initiatives to define standard data repre-
sentations to facilitate integration be-
tween systems and organizations. The
more successful have included standards

XML is rapidly turning all other integration
approaches into historical curiosities

E
very technology we accept as standard and ubiquitous – from PCs to the World Wide Web – has achieved that level
of overwhelming acceptance because of a “killer app” or other enabling technologies. For PCs it was spreadsheets.
For servers it was the relational database. The Internet might have remained a collection of academic bulletin boards
if it hadn’t been for its two killer apps: e-mail and the World Wide Web.

Business-to-Business
E-Commerce:XML’sKillerApp

xml
 and
e-commerce

xml
 and
e-commerce

[WRITTEN BY JOHN SPIERS

56 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

for EDI, the HL7 standard within health
care and interbank settlement systems.
However, such standards have generally
offered limited flexibility, suffered from
multiple dialects and been applied only
within their narrow domains. As the
requirements for a broader approach to
information sharing and application
integration have emerged, these tech-
nologies lack the required generality,
simplicity and flexibility. Today the focus
for such initiatives has shifted whole-
heartedly to XML – indeed, all these his-
torical standards are in the process of
being redefined within the XML frame-
work.

The emergence of vertical and hori-
zontal schemas (and DTDs) is what truly
facilitates the use of XML for EAI. The first
solutions came out of the academic com-
munity and covered such areas as chem-
ical structures, mathematics and data
documentation for social science (DDI).
Many industry trade groups, vendors and
consortiums are now defining schemas
for their particular industry or areas of
special focus. Schemas become valuable
to EAI when they provide a standard for
vertical markets, such as financial settle-
ments or telephone billing, or a more
generalized business function, such as
credit verification.

The use of common schemas becomes
especially compelling when forging inte-
gration with another organization’s
applications, as in business-to-business
(B2B) solutions. These industry agree-
ments eliminate the need for organiza-
tions to hammer out their own defini-
tions and secure agreements between
each of the individual parties. They also
provide a common specification to be
adopted by applications’ package and
service providers.

XML-Enabling Applications
Until recently, packaged applications

have imposed largely proprietary inter-
faces. As a result, traditional integration
solutions have required custom con-
nectors to deal with each application’s
API. Furthermore, API-based integra-
tion requires a common contract in
terms of middleware (CORBA, COM,
DCE, etc.) that in turn creates depen-
dencies and tighter coupling between
the systems. On its own, XML may sim-
ply be seen as a standardized data rep-
resentation format; when coupled with
HTTP, XML becomes a ubiquitous mid-
dleware solution that lends itself to the
loosely coupled style of integration
required by EAI solutions. In addition,
XML is increasingly being supported by
other message transports such as JMQ
and MQSeries.

In response to the fast-growing de-
mand for interoperability, especially
over the Web, major application ven-
dors, including SAP, Oracle and Siebel,
are now rushing to add XML-based APIs
to their application suites. Such initia-
tives eliminate the need for custom con-
nectors for these packages.

In addition, a third-party market for
XML-based connectors for popular
applications is rapidly emerging. For
example, as part of its recently
announced Open Integration Frame-
work initiative, PeopleSoft will deliver
XML-based APIs that enable developers
to plug into PeopleSoft business
processes without requiring detailed
knowledge of the underlying data struc-
tures.

For legacy applications, custom
wrappers must be provided to deal with
the native APIs and to convert the native
data streams to an XML equivalent.
Given the prevalence of legacy and cus-
tom applications, the ability to create
new connectors rapidly is a critical fac-
tor in the success of integration solu-
tions.

Forrester Research forecasts that
application providers will soon bundle
XML translators into their products.
These translators will support XML and
the industry-specific schemas for their
target markets. Wherever a set of appli-
cations supports a common schema, the
need to provide custom data integration
and transformation services will be
removed.

XSL as a Data Transformation
Mechanism

For broader enterprise solutions,
however, a requirement will remain for
data transformation to support legacy
formats and to provide interoperability
across schemas. For example, a single
organization may support an EDI
schema within its supply chain but a
totally different schema in its manufac-
turing systems. A key benefit of XML is
that it comes fully equipped with a
native data transformation mechanism,
XSL (eXtensible Stylesheet Language).

Applying an XSL stylesheet to an XML
document produces an output docu-
ment (typically XML or HTML) trans-
formed by the application of the rele-
vant XSL rules. The stylesheet concept
provides a clean separation between the
content itself and the specific format
required by a target application or out-
put document. By separating the defini-
tion of content from the format in which
it’s used, XML makes it possible to share
information across multiple require-
ments.

In early draft specifications XSL pri-
marily provided a mechanism for manip-
ulating tags, particularly to allow specific
formatting elements to be applied for
presentation purposes. Today XSL pro-
vides not just a formatting capability but
also, through XSLT, a full transformation
capability able to manipulate both tags
and data content.

The effect is that XSL has emerged as
a standards-based data transformation
capability for XML-based data and the
ideal vehicle for the data manipulation
aspects of e-commerce.

In traditional integration projects,
transformation has been custom-coded
or implemented through a proprietary
data transformation tool. The advan-
tages of employing XSL for transforma-
tion lie in the clear separation of trans-
formation rules from the application
programming effort and in its seamless
integration with XML.

XSL becomes the natural way to pro-
vide schema-to-schema transformation
in the XML world. In the future, XML
applications’ initiatives will not only
define the schemas themselves but also
specify transformation templates in XSL
to make their data readily available to
other applications’ domains.

Conclusion
XML – THE LANGUAGE OF E-COMMERCE

XML promises to achieve for struc-
tured information what HTML achieved
for text and graphics on the Web.
• XML is rapidly emerging as the pre-

ferred data integration backbone within
and across organizations and industries.

• XSL provides a built-in mechanism
for dealing with different data seman-
tics across applications and domains.

• XML, in conjunction with XSL and
HTTP, provides for the customized
delivery of information to the brows-
er, a prerequisite for compelling cus-
tomer-oriented applications.

Business-to-business e-commerce is
fueling the adoption of XML. The Inter-
net has rewritten the rules for supply
chain management, redefined telephony,
set new standards for 24-hour customer
service and spawned new business mod-
els. These new Web-based systems must
be effectively integrated with applica-
tions from partners, suppliers and exter-
nal service providers such as credit card
vendors and shippers. XML is the
lifeblood of this new world, and is rapid-
ly turning all other integration approach-
es into historical curiosities.

J S P I E R S @ F O R T E . C O M

AUTHOR BIO
John Spiers is vice
president of
international marketing
and Internet application
and performance tools
at Sun Microsystems.
A well-known figure in
the IT industry, John
frequently appears in
the press and on
speaking platforms.
He holds a master of
arts degree from
Cambridge University.

57V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

This article focuses on the details of the
technology, its benefits and its architecture,
and how it fits into the Object Management
Group’s (OMG) modeling and repository
architecture. We provide a simple example
to illustrate the technology that was waiting
for OMG’s technical vote as of March 1999.

Technology in a Snapshot
XMI is an open, stream-based inter-

change format formed by the integra-
tion of three key industry standards:
• XML: A W3C standard that defines an

open, metamodel-neutral, program-
ming language-neutral, API-neutral,
streamable, textual, human-readable
format to bring structured informa-
tion to the Web

• UML: Unified Modeling Language, an
OMG modeling standard that defines
a rich, object-oriented modeling lan-
guage/notations for object-oriented
analysis and design (OA&D)

• MOF: Meta Object Facility, an OMG
metamodeling and metadata repository
standard that specifies an extensible
framework for defining models for meta-
data and represents it as CORBA objects;
uses UML notations for models

The origin of XMI can be traced to
November 1997, when MOF and UML
were adopted as OMG standards. However,
because of lack of time, SMIF was not spec-
ified. Thus, in December 1997, OMG issued
an RFP for SMIF. This received three initial
submissions – XMI, CDIF and UOL – that
are now integrated into one, XMI. Figure 1
shows the position of SMIF in the OMG
repository and modeling architecture.

Why an XML-Based Interchange?
XML, which is based on SGML (Stan-

dard Generalized Markup Language), is a
simple, flexible, tagged format designed
for information interchange. The key fea-
ture, which enables XML to be chosen
over other formats, is its ability to sepa-
rate data and metadata, presentation and
content. This architecture of contextual
separation enables generic tools (like
XML parsers) to validate an XML docu-
ment against its grammar, commonly
known as data type definition (DTD).

Thus XML-based metadata inter-
change boils down to defining DTDs for
MOF, UML and other standards. With
this power it isn’t surprising to see that
the support for XMI is industry-wide.

The key aspects of the architecture
are:
1. A four-layered metamodeling archi-

tecture for general-purpose manipu-
lation of metadata in distributed
object repositories.

2. The MOF model is used as the meta-
metamodel, while MOF is used to
define and manipulate metamodels
programmatically using fine-grained
CORBA interface. This approach
leverages the strength of CORBA dis-
tributed object infrastructure.

3. UML notation is adopted for represent-
ing models and metamodels and to
describe the semantics of OA&D models.

4. XML enables SMIF.

Figure 2 shows XMI in a nutshell and Fig-
ure 3 shows the OMG’s four-layered meta-
data/metamodeling architecture. The

An open-interchange model that brings
consistency and compatibility to applications

I
t’s finally here – the specification for Components’ Metadata Interchange based on XML. XML Metadata Interchange
(XMI) format specifies an open-interchange model intended to give developers working with object and distributed tech-
nology the ability to exchange data between tools, applications, repositories, business objects and programs. This is a
stream-based model interchange format (SMIF) that enables the exchange of modeling, repository and programming

data over the network and Internet in a standardized way. XMI is a much-needed specification to bring consistency and com-
patibility to applications created in collaborative environments.

TheSpecificationforthe
MetadataInterchangeFormat

xml
 modeling

xml
 modeling

58 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

FIGURE 1 OMG repository and modeling architecture

Tools, Applications, Repositories

Metamodels (UML, CWM...)

Meta Object Facility (MOF),
Stream-Based Model Interchange Format (XMI)

CORBA Object Services

CORBA

Object Services
APIs

Object Request Broker (ORB)

Tools, Applications,
Repositories

Repository Common Facility

MOF SMIF
(XMI) UMI...

APIsAPIs

[WRITTEN BY ILANGO KUMARAN S

59V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Microsoft
www.msdn.microsoft.com/events

V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

current XMI architecture is now extended
to include data warehouse metadata
(Common Warehouse Metadata Inter-
change RFP) and other metadata by
defining MOF-compliant metamodels.

What the Specification Provides
The current specification focuses on

import and export of metamodels and
models including extensions. As stated
above, the current architecture is being
extended for interchange of repository,
data-warehouse data.

The current specification provides
an unambiguous XML DTD for UML-
based models (UML DTD) as well as
MOF-based metamodels and their
instances (MOF DTD). It also provides
a precise MOF-to-XML mapping that
allows interchange of any MOF-based
metamodel and corresponding models
(MOF—>XML Stream) and enables
automatic generation of DTDs for any
MOF-based metamodel (MOF—>XML
DTD). In addition, it recommends the
use of UML and MOF for metamodel
design.

Figure 4 shows an example of a simple
model and its XML document fragment.

Conclusion
Adoption of this technology opens up

many benefits to the distributed object
industry. For example:
• It enables open interchange of the

MOF meta-metamodel, UML and
other information assets between
vendor tools (this helps save time on
evaluating and choosing a specific
modeling/repository tool like Ratio-
nal Rose, System Architect, Select,
TeamConnection, Oracle, etc.).

• It leverages the existing XML/HTML
infrastructure to publish design meta-
data on the Web.

• It ensures compatibility between
application tools, IDEs, languages,
databases and the like in heteroge-
neous environments.

• It facilitates exchange of metamodel
information over the Internet for
developers working in a remote, dis-
tributed or intermittently connected
environment.

• It provides middleware-neutral open
interchange, which will be of signifi-
cant benefit in non-CORBA and hybrid
CORBA environments.

This exciting, desirable technology
advances our quest for open standards
in distributed heterogeneous environ-
ments.

S I K S @ H O T M A I L . C O M

FIGURE 2 XMI in a nutshell

UML

XML MOF

XMI
Metadata

Interchange

UML

XML MOF

CORBA

Repositories

Software Assets

Reports/Publishing

Development Tools

Design/Modeling Tools

Database Schema

FIGURE 3 OMG’s metadata/metamodeling architecture

M3 Meta-Metamodel MOF Model

M2

M1 Metadata Model

M0 Data

Metalevel MOF Terms Examples

Meta-Metadata
Metamodel

UML Metamodel
CWMI Metamodel, etc.

Warehouse Schemas,
Models, etc.

Modeled Systems,
Warehouse Databases, etc.

FIGURE 4 A simple example of an XML document fragment

<!-- Document Prologue, etc. -->

<Model xmi.id="t1"> <name>Hospital</name><visibility xmi.value="public"/>

 <ownedElement>

 <Class xmi. id="t7"><name>Patient</name>

 <feature>

 <Attribute>

 <name>id</name>

 <multiplicity>

 <XMI.field>1</ XMI.field>

 < XMI.field>1</ XMI.field>

 <multiplicity>

 <type>< DataType href="t3"/></type> <!-- Patientid -->
 </Attribute>

 <Operation>

 <name>updatepatient</name>

 <scope xmi.value="instance"/>

 </Operation>

 </feature>

 </Class>

 </ownedElement>

</Model>

Patient

Hospital

id: Patientid
updatepatient();

AUTHOR BIO
Ilango Kumaran S,
an associate at The
Technical Resource
Connection, Inc., based
in Tampa, Florida, has
worked on the design
and development of
distributed object and
object systems for more
than 10 years. He has
extensive experience
with Java, EJB, RMI,
CORBA, C++, RDBMS,
OODBMS and Web
technologies. Ilango,
who holds an MBA from
IGNOU, India, and an
MS in engineering from
Anna University in
India, has written
extensively about
emerging technologies.

60

x
m

l
m

o
d

el
in

g

61V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Microsoft
www.msdn.microsoft.com/training

62 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

SoftQuad Software, Software
AG Form Strategic Alliance
(Toronto, ON, and Darmstadt,
Germany) – SoftQuad Software
Inc. and Software AG have
announced a joint
initiative to inte-
grate SoftQuad’s
XMetaL XML
authoring
environ-
ment and
Software AG’s
Tamino XML Information Server.
The integrated products provide
customers with a complete solu-
tion for developing, managing
and publishing XML content for
a wide variety of electronic busi-
ness applications.
www.softquad.com

IBM Selects XML.ORG
(Boston, MA) – OASIS, the ven-
dor-neutral organization for XML
interoperability, announced that
IBM has submitted its Trading
Partner Agreement Markup Lan-
guage (tpaML) for standardiza-
tion within the OASIS XML.ORG
initiative. Developed by IBM, the
tpaML specification uses XML to
define and implement electronic
contracts.

The foundation of tpaML is
the Trading Partner Agreement
(TPA), which defines how trading
partners will interact at the
transport, document exchange
and business protocol layers.
XML-based TPA documents cap-
ture the
essential
informa-
tion upon
which trading partners must
agree in order for their applica-
tions and business processes to
communicate.
www.oasis-open.org

DataChannel Server 4.0
Released
(Bellevue, WA) – DataChannel
has released its flagship XML-
based Enterprise Information
Portal Server, DataChannel Serv-
er 4.0

Enterprise Information Portal
Solutions from DataChannel
provide customers with a per-
sonalized e-business interface to
mission-critical information.
This information can be dynami-
cally categorized into “channels”
that are then published in a per-
sonalized view to the right user,
inside or outside the enterprise.
www.datachannel.com

Object Design Changes
Name; Announces New
Products
(Burlington, MA) – Object
Design, Inc., has changed its
name to eXcelon Corporation
and announced that its new
NASDAQ ticker symbol is EXLN.
The name change reflects
eXcelon Corporation’s increasing
role in the expanding market for
business-to-business solutions.

The company is also extending
its product family to include a
new B2B integration server
aimed specifically at the B2B
solutions market, and is
announcing the eSolutions ser-
vices organization that will pro-
vide industry-specific e-business
frameworks and solutions.
www.exceloncorp.com

Microsoft Announces Support
for XSLT and XPath
(Redmond, WA) – Microsoft has
released a preview version of its
XML parser, delivering on its
commitment to support the
W3C’s latest recommendations of
XSL Transformations (XSLTs) and

XML Path Language (XPath). The
parser, which includes new fea-
tures that increase performance
and efficiency, is available for
immediate download at
http://msdn.microsoft.com/dow
nloads/webtechnology/xml/msx
ml.asp.

Bluestone and Bentley
to Bring XML-Driven
Applications to the
A/E/C Marketplace
(Houston, TX) –
Bluestone Software,
Inc., and Bentley
Systems, Inc., are
bringing XML-dri-
ven engineering
project application
services to the $3.6 trillion archi-
tecture, engineering and con-
struction (A/E/C) industry.

The two companies have
entered a three-year agreement
that gives Bentley license to
develop engineering software
solutions based on Bluestone’s
award-winning Sapphire/Web
Application Server, Bluestone
XML Suite Integration Server and
Bluestone’s comprehensive stan-
dards-based, e-business solu-
tion, Total-e-Business.
www.bentley.com
www.bluestone.com

OAGI Releases 122 XML
Based Business Messages
(Chicago, IL) – The Open Appli-
cations Group, Inc. (OAGI), the
largest publisher of XML-based
business messages in the world,
announces the publication of
their latest specifications for e-
business and application inte-
gration. Release 6.2 of the busi-

ness process-based Open Appli-
cations Group Integration Speci-
fication (OAGIS) contains the
largest and richest set of XML
DTD files in the world and goes
farthest toward defining the
“digital dial tone” that organiza-
tions require to do business in
the emerging e-world. These
specifications may be down-
loaded for free at www.openap-
plications.org.

(Pearl River, NY) – XML-Journal is launching a
key, XML-focused conference and expo sched-
uled for June 25–28 at the New York Hilton in New
York City. XML DevCon 2000, cosponsored by
Oasis and produced by Camelot Communica-
tions Corp., will feature an intense four-day tech-
nical program focused on how to maximize XML
for the enterprise. Delegates will have the oppor-
tunity to master new skills
from an exceptional lineup of
educational tracks designed
for users of all levels.

“XML DevCon 2000 will provide valuable insight
for XML developers charged with maximizing XML
to build enterprise applications,” said Fuat Kircaali,
founder of SYS-CON Publications and publisher of
XML-Journal. “As the only national XML event
organized on the East Coast in 2000, XML DevCon
2000 will be a historic forum where XML and Inter-
net technology professionals will be able to meet
and share their experiences with fellow software
developers and recognized industry experts.”

For online registration visit www.XMLDev-
Con2000.com or call 212 251-0006.

SYS-CON Publications,XML-Journal Announce XML DevCon 2000

63V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Microsoft
www.msdn.microsoft.com

64 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

GA eXpress Initiates New Era
of E-Business with Products
Featuring XML
(Irvine, CA) – GA eXpress, for-
merly General Automation, has
introduced products that will
support its recently announced
“ePath” strategy by enabling
enterprise-wide e-business solu-
tions for the $3 billion MultiVal-
ue marketplace. Demonstrated
for the first time at the Spectrum
2000 conference in Anaheim,

California, the suite of platform-
independent connectivity and e-
commerce middleware products
give GA eXpress customers a
path to build an industry-com-
pliant foundation for migrating,
manipulating, moving and gath-
ering business-critical informa-
tion electronically.
www.gaexpress.com

HR-XML Consortium Expands
Membership, Initiates Stan-
dards and Workgroups
(Research Triangle Park, NC) –
The HR-XML Consortium
announces that more than 45
organizations have joined the
consortium for the purpose of
creating and promoting stan-
dardized, HR-specific XML
vocabularies.

In addition, five
members have been
elected to the con-
sortium’s board of directors: Jeff
Bonar (Ultimate Software),
David Donahue (Aetna), Gary
O’Neall (Icarian), Lon Pilot (Wat-
son Wyatt) and Cari Willis (IBM).
The board is tasked with leading
the nonprofit group in creating
and promoting a standardized
XML framework for a broad
range of human resource-related
transactions and intercompany
data exchanges.
www.hr-xml.org

Internet Visionary Joins
XMLSolutions
(McLean, VA) – XMLSolutions
Corporation, the only provider of
XML-based EDI Solutions and
XML Schema Management prod-
ucts and services, has
announced that Edwin Miller has
joined the company as president
and chief operating officer.

A leader in the Internet, com-
munications and software indus-
tries since 1993, Miller has exten-
sive understanding of new busi-
ness models and the digital
economy, including business-to-
consumer e-commerce, ISPs,
Web portals, interactive advertis-
ing, software development and
publishing. www.xmls.com

OASIS and HL7 Exchange
Memberships
(Boston, MA and Ann Arbor, MI) –
In a move that is expected to fur-
ther XML application and inter-
operability in the healthcare
industry, OASIS and Health Level
Seven (HL7) have exchanged
sponsor memberships. The reci-
procal membership opens com-
munication between the cross-
industry efforts of OASIS, which

advances XML interoperability
through its XML.ORG industry
portal, and the industry-vertical
XML development work of HL7,
which has made great strides in
implementing XML for clinical
patient and healthcare services.
Both groups are international in
their focus. www.hl7.org
www.oasis-open.org

Introducing Stilo
XMLDeveloper
(Cardiff,Wales) – UK e-commerce
development tools and services
specialist Stilo Technology
announces a breakthrough in
applications development with
the launch of Stilo XMLDeveloper.
This software delivers huge sav-
ings in development time,
enabling organizations to bring
new e-commerce applications to
market faster
than ever.
www.stilo.com

Information Architects Offers
Industry's First XHTML
Conversion Solutions
(Charlotte, NC) – Information
Architects announces its sup-
port for the W3C Recommenda-
tion for XHTML 1.0.

Bridging HTML with the
power of XML, XHTML provides
flexible Web pages and robust
Web applications for a wide
range of platforms and browsers,
including handheld computers,
mobile phones, PDAs, two-way
pagers, televisions and kiosks.

Offering scalable, bidirectional
dynamic exchange of both struc-
tured and unstructured data,
content and commerce function-
ality in any format, iA’s Metapho-
ria products automatically trans-
form static and dynamic docu-
ments to HTML, XHTML and
advanced data formats such as
XML and RDF. Further informa-
tion on XHTML 1.0 can be found
on the W3C Web site at
www.w3.org/.

RSA and Netfish Introduce
XML-Based Solution for Baan
Customers
(Englewood, CO, and Santa
Clara, CA) – RSA Companies and
Netfish Technologies have
formed a strategic alliance that
now allows the two companies to
deliver a set of Internet-enabled
business process integration
tools and solutions to the Baan
customer base. The joint devel-
opment
effort has
resulted in a
“Baan
Adapter” that will seamlessly
integrate the Netfish XDI system
with the mission-critical applica-
tions within the suite of Baan
BackOffice applications. The
companies also announced that
RSA Companies has become a
certified sales and integration
partner of Netfish and will be
delivering Netfish products and
services to customers of Baan as
well as other ERP systems.
www.netfish.com
http://rsacompanies.com

(San Ramon, CA) – OnDisplay, Inc., a leading
provider of e-business infrastructure software for
powering e-business portals and e-marketplaces,
will deliver the industry’s first free business-to-
business XML server software for any organization
that needs to establish secure,
guaranteed exchange with online
trading partners. Called XML
Connect, the new product
enables the exchange of XML business documents
– such as purchase orders, invoices and order con-

firmations – seamlessly and securely with any
other XML Connect user, as well as with users of
OnDisplay’s CenterStage eBizXchange product.

XML Connect will be generally available on
March 30 as a free download from the XML Con-

nect Web site
(www.xmlconnect.net) and from
OnDisplay’s Web site
(www.ondisplay.com). The prod-

uct will include free online support.
www.address.com

OnDisplay Launches Industry’s first Free B2B XML Server

65V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Simplex
Knowledge Co.

www.skc.com

66 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

This article explores the paradox that sharing a com-
mon vocabulary can actually restrict the richness and
nuances of a business paradigm.

The Trend to Share Common Vocabularies
One of the trends we find in the rapidly expanding world of XML is a

desire to define unified vocabularies for expressing exchanged data. It
seems obvious that the number of XML vocabularies used should be
minimized, and, indeed, efforts to find agreement within various indus-
tries are laudable and to be encouraged. But these efforts may not always
reduce the difficulty of exchanging information and might, paradoxical-
ly, limit the longevity of information by hiding complexities behind
superficial agreements. The issue is meaning, not markup.

Consider this illustration. At a summit of religious leaders aimed at
increasing common understanding among the world’s religions, it is decid-
ed that everyone will speak English and use the vocabulary of Protestant
Christianity. However, as soon as the discussions start, there are problems.
Someone uses the word heaven and many people nod in recogni-
tion. But as the discussion progresses, it is clear that even
the different Christian delegates have understood
different nuances of the word, to say nothing of
the Hindu and Buddhist representatives. As
time goes by, they realize that perhaps they
should have agreed at the start not to use a
single vocabulary but rather to describe
what the relationships were between the
apparently similar words in the vocabular-
ies with which they were already familiar.

In the same way, a shared vocabulary
for users in the same domain may not be
enough to allow them anything but the
most rudimentary sharing of information.
Different organizations usually have diverse
backgrounds and varying views of the world, and
their competitive advantages often result from their
different paradigms. When all that is involved is basic
data (to do with billing or ordering, for example), the issues
may be trivial, but full-scale cooperation between companies will increas-
ingly involve mind-to-mind connections. At this point, when differences
come to light they will result from trying to cram paradigmatic variations
into the same syntax. Resolving differences will be hard even when the dif-
ference has been detected because the semantic strength of the vocabulary
in use may not allow for the proper expression of the alternate paradigm.

The Paradox
So we discover a paradox. It would seem that common purposes

should share common vocabularies. Yet in defining the data model for a
business, it may be better to invent a local variant of an existing vocabu-
lary – or in extreme cases a whole new vocabulary – to fully express the
richness and nuances of a business model and paradigm. This was, after
all, the feature of XML that first drew the attention of both the publishing
and the computing worlds – that magical letter X for eXtensible. The chief
skills for the use of XML will prove to be those of the business analyst,
defining data and naming parts, rather than those of the programmer.

The Need to Map the Relationships Between Paradigms
Translation will therefore be key. There is certain to be a need to move

between different vocabularies, be they supersets of standards or custom
vocabularies. In these early days of XML it will no doubt be enough to use
straightforward transliteration functions. The functions of the proposed
XSL standards are more than enough to allow exchange between basic
business vocabularies. If the number of these vocabularies can be kept to
a minimum, the task of setting up the simplest transactions could be easy,
especially using visual tools to perform the mapping. But there will always
be a mapping, even if there is only one common exchange vocabulary. The
mapping describes the relationship between the meanings of two para-
digms, and will be easiest to create if the paradigms in question are
mapped and understood. Paradoxically, two different paradigms attempt-
ing to use a common vocabulary may produce more confusion and diffi-
culty than if they had used custom vocabularies, because their paradig-
matic differences may be concealed in the use of common terms.

But mechanical transliteration is not the same as translation. Transla-
tion involves the expression of the ideas within one paradigm in the lan-

guage of another, and to translate mechanically is very hard. Defin-
ing a true translation mapping may involve different treatment

of the same tags in different contexts and requires an
understanding of both paradigms. As the need to con-

nect heart to heart between e-businesses increases,
there will be more and more demand for comprehen-
sive approaches to creating XML mappings.

To connect from the heart of my e-business to the
heart of yours would be impossibly expensive in
shared systems without XML, but even with it the
system analysis needed to create the translation is a
significant task. We should not assume that XML is a

panacea, or that the standardization of vocabularies
will automatically bring interoperability. XML provides

us with a medium to express our understanding of the
meaning of data, but we will still have to first discern reali-

ties and differences of meanings when we exchange data.

What Matters Is the Meaning
May the efforts of industry groups to define common XML vocabular-

ies flourish and succeed! But should they fail to reach a single, uniform
set in every case, if diversity should multiply, no problem. At least the
meanings will have been well described, fully annotated and put within
reach of analysis, mapping and machine manipulation. What matters is
the meaning, not the markup.

AUTHOR BIO
Simon Phipps, IBM’s chief Java and XML evangelist, was part of the team that recommended Java to
IBM in 1995. He has since spoken internationally on the new world that is engulfing computing,
powered by Web and Java technologies. He now has worldwide responsibility for XML evangelism for
IBM. With over 20 years’ experience in the computer industry, Simon has worked on networking, data
communications and operating systems for various companies in many contexts, including development
of the earliest commercial collaborative conferencing software with IBM. (Opinions expressed in this
article are those of the author and do not necessarily reflect the views of IBM.)

S P H I P P S @ U K . I B M . C O M

WRITTEN BY SIMON PHIPPS]

Meaning,NotMarkup

67V I S IT U S AT www.XML-JOURNAL .com volume1 issue1

Ad

68 V I S IT U S AT www.XML-JOURNAL .comvolume1 issue1

IBM
www.ibm.com/developerworks

