Distributed Systems

Naming

Lecture 8

June 7 2004

Schedule of Today

Implementation of a Name Space
Examples: DNS and X.500

= Locating Mobile Entities
= Naming versus Locating Entities
= Simple Resolution
= Home-based —Hierarchical Approaches

= Removing Unreferenced Entities
= Unreferenced Objects
= Reference Counting and Listing
= ldentifying Unreachable Entities

Name Server
Components of Name Service Architecture

Name agent:

- Supplies interface between
name service and client

- Cooperates with name servers
in order to generate, resolve,
... hames

- Caches the results

| Client | | Client Client
Name | | Name | 00O |Name
Agent | | Agent Agent

= Name server:

‘ - Manages context information
Name Name | and implements mapping
Server Server function

- Sometimes cooperate with
other name servers

- Supplies an interface for the
name agent

| [eJe)e]

Name Server

Name Service Operations

Manipulation of context information:
- ADD: Create a reference: Name — Object
- DELETE: Delete a reference
- MODIFY: Change a reference

Queries:
- READ: Resolve a name into an object
- SEARCH: Find a name or object based on some attributes
- LIST: List all names

Administration:
- Assignment of access privileges
- Authentication
- Extension of the name space

Name Server

Name Server Architecture

Name Resolution
- mapping of names to objects

Caching
- of remote context information
for efficient access

Replicated data management

Name resolution h
- management of replicated context

information
. Replicated data Communication
Caching
management - between agents and name servers
- between name servers for
Communication Database cooperation purposes
Database

- management of local context
information

Name Server

Resolution of Structured Names

= Resolution mechanism depends on type of
name
= Location-dependent names
= Name contains the location of the object it
identifies
= Authority-dependent names

= Name contains location of name server being
responsible for name-resolution (the authority)

= Location-independent names
= Name contains no location information

Name Server

Location-Dependent Names (1)

Structure of name space:
Partitioned - Each node has own name server
name space

- Name server only manages the

names of local objects

- Name structure:
Nodel D. Obj ect | D

L
Names are generated:
- by the local name server

i1\ /gl 19

Node 1 Node 2 Node 3

- ... through concatenation of
NodelD and local ObjectID

Name Server

Location-Dependent Names (2)

Name resolution (of N. O):

Partitioned
DE] name space - Name agent sends query to node N.

- Name server of N maps O
to a local object

NS . NS ‘ NS Properties:
[@ [@ I + Nodes are highly autonomous
+ Name authority can be found in
a simple and efficient way

Node 1 Node 2 Node 3 - Objects can not migrate

Name Server

Authority-Dependent Names (1)

Structure of the name space:
D]ED Partitioned - Every node has a name server
name space - Name server manages the
names of all locally-created objects
- Objects may migrate

- Name server must be aware of the
locations of all migrated objets

NS . NS . NS .
@ [@ l @ - Name structure: NodelD.ObjectID
\ Names are generated:
|

- ... by local name server
- ... through concatenation of the
NodelD and local unique ObjectID

Node 1 Node 2 Node 3

Name Server

Authority-Dependent Names (2)

Name resolution (of N.O):

» - Name agent sends query to node N.
DE] Partitioned - Name server of N maps O
name space .
to a local object
Properties:

+ Name generation is simple
+ Name authority can be found in

NS NS NS a simple and efficient way
[[I eee | + Objects can migrate
K —/ - Additional overhead for the

monitoring of migrated objects
- Only one (fixed) authority per object

Node 1 Node 2 Node 3

Name Server

Location-Independent Names (1)

Structure of the name space:
- Hierarchically structured NS
- Hierarchy can resemble:
- organizational structure
- system topology
- geographical distribution
- etc.

Name Server

Location-Independent Names (2)

Relative name of an object:

- ldentifies a name uniquely in
context of its parent object

- Example:
uka/ira/schmitt (parent = de)

Absolute name of an object:
- Globally unique identifier for
each object

- Concatenation of the relative
names of all predecessors

- Example:
/de/uka/ira/liedtke

Name
Servers

Name Server

|8} Location-Independent Names (3)

Zone 1
_ zonea Servers| | [HI[1]
Zone 3
Zone 2
Name A
Servers Bl [C
Zone 3

Zone 4
D Name E
Servers

Partitioning of name space:

- Hierarchical name space is
split up into zones

- Each zone has at least
one name server

- Name server manages name
space covered by the zone

- Replication achieved by
having multiple name servers
per zone

10 © 2004 st K, Sysom rchitectrs oo

Name Server

Location-Independent Names (4)

Every name server knows
- ... at least one server of root zone

- ... the root zone of every child zone
and at least one name server of it
- Name server manages the name

Name resolution:

- Agent asks arbitrary name server N

- If N knows the name
= local resolution

- If N does not know the name
= Resolution starts with a root server
= ... and works its way down the

server hierarchy until the name

10 © 2001 Unverstat ke, ystem e Gaup

has been completely resolved

Name Server

Location-Independent Names (5)

Name resolution

- ... is done by the authority
responsible for the object

Properties:

+ Objects can migrate

+ Authority for an object may change

+ Multiple authorities possible
(replication)

- Resolution may be expensive
(Efficiency improved by caching)

- Name generation may require
communication

Caching

Naming
System
Agent
Cache
Client

Name Server

- Cache contains mapping information
- On receipt of a request for resolution,
agent checks if required information
is already or still in the cache
- Yes: Resolution is done locally
- No: Agent sends a query to the
naming system; its result is
stored in the cache
- A cache entry is invalidated when
after a resolution it is found to be stale

Replication (1)

Name Server Replication

AN
H \ /
\r/
NS: Name Server
Cl: Context Information
H: Host
G: Gateway NS3

NS2

VR

Goal:
- High availability, fast access

Pessimistic methods:
- One-copy serializability
- Limited availability if
the network is partitioned

Optimistic methods:
- Weak consistency
- But: Available even if

the network is partitioned

Name Server Replication

NS: Name Server

Cl: Context Information
H: Host

G: Gateway NS3

Weak consistency is sufficient:
If naming information is changed
infrequently
Even if stale information is used,
in many cases no harm will be done

If use of the information will reveal
that it is stale

10 2008 Unverstat ke, ysem Achiere Graup

Examples Examples
Some Examples Domain Name System”
= DNS: The Internet Domain Name System DNS = distributed database used by TCP/IP applications
to map between hostnames and IP addresses +

= Jini: Network Technology to provide electronic mail routing information
= GNS: Global Navigation System Primary task:))

= Mapping from a symbolic name to the 32 bit Internet(IP)

address, e.g.

= NIS - Network Information Service nccul | er. uni -karl sruhe.de — 129.....

= General functionality:
= X.500 = Mapping from hierarchical names to objects
= LDAP - Lightweight Directory Protocol

*Paul Mockapetris (1984, standard in the Internet since 1987)

Examples
Domain Name System Domain Name System
= Name space: tree, edges labeled Name space:
. . . - manages names for: computer, email-server, ...
= Name of incoming edge identifies a node
= Each subtree is called a domain Name structuring:
i = hierarchical name space
= Sequence of edge labels to the root is a = pathnames start at the leave and end at the root, e.g.
domain name i30www.ira.uka.de
. = Top level domain has fixed names (can be changed only by an
= Each node contains a resource record official Internet-office) below top level domain you can have as
many levels as you need
Examples

DNS Top-Level Domain

Domain Name Meaning

com Commercial bussiness

edu Universities (colleges) in USA

gov Government departments(USA)

mil Military institutions

net Netprovider

org All other business

arpa Temporal ARPA-domain

int International organisations

Zip code of Abbreviations of all countries

Country(e.g. de)

DNS Name Servers

a.root-servers.net
(root)

uk
purdue.ed
yahoo.com

nsl.nic.uk
(uk)

ns.purdue.edu

(purdue.edu)

ns0.ja.net
(ac.uk)
* purdue.edu
ic.ac.uk
qmw.ac.uk
des.gmw.ac.uk *.dcs.gmw.ac.uk!
\.gmw.ac.uk

alpha.gmw.ac.uk dns0.dcs.gmw.ac.uk dnsO-doc.ic.ac.uk
(qmw.ac.uk) (dcs.qmw.ac.uk) (ic.ac.uk)

Note: Name server names are
in italics, and the corresponding
domains are in parentheses.

Examples

DNS Resource Records

Iypest [sseiated | ooscripon

SOA Zone Holds information on the represented zone

A Host Contains an IP address of the host this node represents

MX Domain Refers to a mail server to handle mail addressed to this node

SRV Domain Refers to a server handling a specific service

NS Zone Refers to a name server that implements the represented zone
CNAME Node Symbolic link with the primary name of the represented node

PTR Host Contains the canonical name of a host

HINFO Host Holds information on the host (OS + HW-type) this node represents
TXT Any kind Contains any entity-specific information considered useful

= Most important types of resource records forming the
contents of nodes in the Internet's DNS name space.

10 © 2004 st K, Sysom rchitectrs oo

DNS Name Space

S

™ W]
M L i
- & > ¥ L] & Mt e rm
| Ll e i e Bl Wi Ee 9 s
ke LA S T Ll R Lt B L B
P
avm i -
T B S F o
il W T
PR i ¥
Ligra Py
HEE Ld
508 Zora [

10 © 2001 Unverstat ke, ystem e Gaup

Examples
DNS Implementation DNS Implementation
o[l excerpt from G T T e e
DNS = s
tabase for the . ; -_._ - vl Name Record type Record value
zone cs.vu.nl.] 1 -2
— cs.vu.nl NIS solo.cs.vu.nl
- . solo.cs.vu.nl A 130.37.21.1
= - = Part of the description for the vu./7/domain
w E s which contains the ¢s.vu.n/ domain.
Examples Examples

Replication and Caching in DNS

= Replication
= for every root server there are at least 2 replicas
= primary/backup principle
= backup servers update their state periodically via
primary server
= Caching
= each name server implements caching

Further reading:
F. Halsall: “Data Communications, Computer Networks and Open System”,
Addison-Wesley 1992

D. Comer: “Computernetzwerke und Internets”, Prentice Hall 1997

» Hierarchical, location-independent
names

* Name space is split up into
domains being ordered in a
tree-like fashion

« Each domain receives a domain
name being unigue among its
sibling nodes

* Absolute name of a domain is
obtained by concatenating the
relative names on the path from
this domain to the root of the tree

Example: i30www.ira.uka.de

Printing
service

— ciient

2. Here lam:

Client (" W _ 1. ‘finance’
\ ookup service?

admin

Lookup
service,

4. Use printing

service
Printing
service,

admin, finance

3. Request
printing

Corporate
{nfoservicg
finance

Examples Examples
DNS Name Server Hierarchy DNS System Architecture
@ Root ¢ user networkfmanager
’\ oot server for com orver Client !
1
7 T~ :
o :
oS 0s
@ Server for opel.com ‘ | ‘ ‘ l ‘ l ' i
1) 2| |5 '
@ service service d i
access jname narme.
protocol protocol server
|6 A q i 1
Crtm) Ceisen) Cdetroit) | TcPip | \ TCP/IP | [Tcrip |
|—, \&/
u [P-address M
Examples
Example Overview on Jini
user ! T
l & | Wit & B | Wite B T |ReadT
hostname T T
[
[3
Irmers n mwsl | Luflu.
. fuphs Tl
oopy of & mpy ok B ||up;'.1m_
Ld
If the name & [Z] a Reum S
could be resolved A . fard optonally
g ¥ yrTaram o]
Tk insimnce = H | [
software A raaspacs
hardware IP Address = The general organization of a JavaSpace in Jini.
Service Discovery in Jini Books on Jini
admin = “Jini Technology: An Overview” by llango Kumaran

Prentice Hall PTR (November 2001),

"For all managers, architects and consultants seeking to
evaluate Jini from a technological and architectural perspective,
and compare it with other work."

= “ Developing Jini Applications Using Java 2 “ by
Hinkmond Wong
Addison Wesley Longman (September 2001),
"This book is your key to understanding and avoiding common

traps and pitfalls that await developers approaching Jini and
J2ME technology for the first time. “

Global Name Service (GNS)

DI:599 (EC)

FR DI: 574

Peter.Smith
mailboxes /%sword
Alpha Beta Gamma

c & o

0 2008 Unversst Ko, St Artacure Grovs B

Examples

Directory Service: X 500

CCITT and ISO standard (1988):
Names
e List of tuples <attribute = value)
* Attributes

- country “c”

- organization “o”

- organizational unit “ou”

- surname “sn”

- telephone number “telephone”
Example:

/c=de/o=uni-karlsruhe/ou=rz/sn=zoller/telephone=+49 721 608 40~

0 © 2004 Unersa arrue, Systom At Group El

Directory Service: X.500

= A Directory Service supports lookup based on a set of
attribute values (yellow pages)

= Directory entries contain <attrib, value> pairs

= Set of entries forms Directory Information Base
(DIB).

= Naming attributes of an entry jointly identify an entry
uniquely.

= Canonical sequences of naming attributes form the
Directory Information Tree (DIT)
= Edges are labeled with <attrib, value> pairs

= Each name attribute is a so called RDN (relative
distinguished name)

Examples

The X.500 Directory Entries

Attribute Abbr. Value

Country C NL

Locality L Amsterdam

Organization [e] Vrije Universiteit

OrganizationalUnit ou Math. & Comp. Sc.

CommonName CN Main server

Mail_Servers . 130.37.24.6, 192.31.231,192.31.231.66
FTP_Server - 130.37.21.11

WWW_Server - 130.37.21.11

= A simple example of a X.500 directory
entry using X.500 naming conventions.

0 © 2004 Unrstt

Examples

The X.500 DIB

= ML
= e L e i

Cill= fnth. & Comp. Sc

L = Msn s
=4

sl Farrg = i Huordd_Farmd = Zapfe

= Part of the directory information tree

0 © 200 Unarst Ko, System Arhtscue G a

Examples
The X.500 Name Space

ribute Value Attribute Value

ntry NL Country NL
Locality Amsterdam Locality Amsterdam
Organization Vrije Universiteit Organization Vrije Universiteit
OrganizationalUnit Math. & Comp. Sc. OrganizationalUnit Math. & Comp. Sc.
CommonName Main server CommonName Main server
Host_Name star Host_Name zephyr
Host_Address 192.31.231.42 Host_Address 192.31.231.66

= Two directory entries having Host Name as RDN

0 © 2004 nwesat ke, System At Group w2

X.500 Directory Information Tree

X.500 Service (root)
. France (country) Great Britain (country) Greece (country)...

.. BTPlc ization) University of Gor ization)

... Computing Service (organizationalUnit)
Department of Computer Science (organizationalUnit
Engineering Department (organizationalUnit)

... Departmental Staff (organizationalUnit)

ely (applicationProcess)
//Nh Students (organizationalUnit)

... Alice Flintstone (person) - Pat King (person) James Healey (person) Janet Papworth (person) ...

X.500 Lookup

Name lookup
[ist(/C=NL/O=Vrije Universiteit/
OU=Mat h. &Conp. Sci . / CN=Mai n server)
returns corresponding names
star zephyr

Directory lookup
search &(C=NL) (O=Vrije Universiteit)
(OU=*) (CN=Mai n server)
returns all entries with matching attributes

Locating Mobile Entities

Locating Mobile Entities

= Up to now we always had a mapping from:
User friendly names — node addresses

= Mobile systems often change either their names or
their addresses in a DS, we need a better solution for
looking up a specific node:
= Name — identifier
= ldentifier — address

Migration of Service

Example:

Assume we move ftp.cs.vu.nl to a new machine in a
very far away domain, suppose: ftp.cs.unisa.edu.au

However, we would like to use ftp.cs.vu.nl , because

many applications might contains program fragments
using this name a as symbolic link, i.e. this name will
be used as an ID, thus hanging this ID, all links to it

will be invalid.

Two Principle Solutions

1. Insert the address of the new machin in the DND
data base for the entry cs.vu.nl
= No implications for look ups
= However, if this ftp-service will migrate again to some
other place, also its entry in the DNS data base has to be
updated
2. Insert the name of the new machione instead of its
address (thus ftp.cs.vu.nl becomes a symbolic name
link).
= Loop ups are less efficient due to its 2 steps
1. Look for the name of the new machine
2. Look for the address related to this new name

Locating Mobile Entities

Naming versus Locating Entities

M | | Fierme Hamw | | Home Hura YaTe Hare | | “bBTe
g
il kg]
L]
oeaica
This NTEFE gady " T & e
Ao fuld e Edcirmn Sdcwm Sdraw dndrms
B H

a) Single level mapping between names and addresses
b) T-level mapping using identities.

Location Services
= Simple approaches (in general, LAN only)

= Broadcast id, corresponding node responds
with its current address (ex.: ARP)

= Multicast id to a well-known group, all mobile
nodes subscribe to that group

Locating Mobile Entities

Forwarding Pointers (1)

Fagoess FT Proay ' epfens o
Py - EATE Ealeinn
P Freaty g
LA Fruoess Fi
|- lodanacal peoay
"
Srormmn 2 Snakarion :‘ £
Preay p T
% k Frocesz P4 [|
Lozl | s
TR EN
] e] K
I Pl L, denizal
e]

= Principle of forwarding pointers using (proxy, skeleton) pairs

Locating Mobile Entities

Forwarding Pointers (2)

She e P

L
e rwbmweoi]
Pt by ey
e o obpec] L
w
&
o4
™ ¥ |)

% badaiz i aopacfn Clri prvp maty

CEIEE PR T & shorrt

Hea purrest koceban

il 1]

Redirecting a forwarding pointer, by storing a shortcut in a proxy

10 2004 et Kk, Sy rchtctrs o

Location Home-Based Approach

= Can be used as a fall-back mechanism with
forwarding pointers

= A dedicated /1ome node always keeps an up-
to-date pointer to the mobile object

= Home node is typically node where an object
originates

= Make home node 7ault-tolerant to ensure
object can always be located

Locating Mobile Entities

Home-Based Approaches

Hoafs o
[1 i) okl - el 0 [0 P

'.J. T Mk s ke

ol cwras o

o

hga
s B0)
ol B
i D) ST (A
e [E T

gy P s

= The principle of Mobile IP

Locating Mobile Entities

Hierarchical Approaches (1)

Thrwte cupd, i p

roda o] biListhac

A 1
Copcizey e
oS of dormen 5

LY TR
iof Wb e m T

T T e

4

& ieal doradn, covtairasin B

= Hierarchical organization of a location service into domains,
each having an associated directory node.

Locating Mobile Entities

Hierarchical Approaches (2)

Finld ==th nc duis
Fiekd oo Siamesr.
Y = Liszation nias

|=J-c-ru-lc E;,:‘ R " for I o noshe M
Loscsarady ieond I
wwith ol gae Tedd ’// 1 \H
Soilissreg as asdiaih ll-. . X
L l-.
[orradn 18 . 2

= An example of storing information of an entity having two
addresses in different leaf domains.

Locating Mobile Entities

Hierarchical Approaches (3)

Moxde knows
mbout [, = requmsl
m forssrded o child

M haes o
reooid for E. s I
That resjLest i f-"‘_,__.-f""#d_
Agraarded o i
S v "\i
& k. :\
gy 1 : .p-
iy
Liskup
" Darraan O

Looking up a location in a hierarchically organized location
service

10 © 2001 Unverstat ke, ystem e Gaup

Locating Mobile Entities

Hierarchical Approaches (4)

Pl kil
ek Fuda b B ey
e 2 (E N e —

A Hepadd ok - wrd s primet
e e

= h""'_.ff S iu‘__ﬂ-ﬂ"’
e L
P \!.I !.l/. Ilh
5 [1
rmay T

. >

A

An insert request is forwarded to the first node that knows about entity

E
b) A chain of forwarding pointers to the leaf node is created

a)

LT —— Prey— G

Locating Mobile Entities

Pointer Caches (1)

¥ "‘IH e 0
F ik
- n
F ke
Coctad coaiars E rervws regul aly Bk
= roda din Ty s e T

Caching a reference to a directory node of the lowest-level domain in
which an entity will reside most of the time

[L R Er—— . System it G

Locating Mobile Entities

Pointer Caches (2)

Cached paintar

b nede dirfC) which

should be irdaldated r/',_-—"‘ I
b} ‘J""i - h.,_“}

\ \ Original address
.) ' A& 15 sl vakd)

. '
-
Pudgrar pckcinges.

Cache entry that needs to be invalidated because it returns a nonlocal
address, while such an address is available.

Locating Mobile Entities

Scalability Issues

v i s LA
tox buaralioy ek b

]
[Ere—————— .
- *
T, L
- e,
T ke w i B
= -
Lo -
e L]
P — e
&
*

S e e v e AL

Scalability issues related to uniformly placing subnodes of a partitioned
root node across the network covered by a location service.

Scalability Solution

L el 2

LA 1

Use of a fat tree to increase the number of servers
at upper levels of the tree

‘‘‘

Scalability Solution

L 1

= Replicating and partitioning binding information
among the multiple parents in the fat tree

© 2004 Unersiat K, Systam At Group

Deleting of Objects

» How to manage, that an object can be
deleted without any dangling reference?

= However, we want to able to delete objects
whether there might be any valid refernces to
that object

n What to do with objects without any current
reference ? (it's wasting resource, may be
never reused again)

= we need a distributed garbage collection

Unreferenced Entities

Problem of Unreferenced Objects

Erddmrs bzarmmg
=n un iemcha ba oyl

ook wari
& T
-
. ah .
- T e o
W ¥ : - -
Reschabds sriny .‘.'
fram thas reat e h.i
=

SIS T LTS
Frosmi S nond e

= An example of a graph representing objects containing references to
each other.

Unreferenced Entities

Reference Counting (1)

Ehrbeioe (mainkaing relosenos oo
Puzoess P . . . Ot
| ACK e
7 ACH o sl - ¥
A ¥y S+
- | '.
Prooty p
ol = Prroacy B b e G0 e Twice

= The problem of maintaining a proper reference count in the
presence of unreliable communication

Unreferenced Entities

Reference Counting (2)

Pl asrdu P BB
g o T e-——]
e ’
" e 1 ki, B
1 L e
[A 1
. 4 " Tira —be
o infyrm O

A ke
-

a) Copying a reference to another process and
incrementing the counter too late

b) A solution.

© 2004 st K, System At Group

Unreferenced Entities

Advanced Referencing Counting (1)

. Partial vesght at
ERI ectd Pama ProcemP & vndstne i v
. * w—t 18
Totad wasght |18 ¥ oprey | 6] 7
Farsl weghl (128 I
4
ol Finy i

a) The initial assignment of weights in weighted reference
counting
b) Weight assignment when creating a new reference.

Unreferenced Entities

Advanced Referencing Counting (2)

Pasinirid P2
R gits half

of tha g 32
o pepay ot P L . Torlal vl paariiad
[P p—— %1 12| wemight ot sapisiod
4 & remain e e
redarenoe i F2 ¥
Froomes F'? *
3z] i
)

c) Weight assignment when copying a reference.

Unreferenced Entities

Advanced Referencing Counting (3)

F1 has un mi

ol varaltl and Oibgesct Fas no
e e pksbslnn 5 LK) i peaflil
Eroreem = 1 [i
Process F7 . - gl
K]
- u 1
Ed—g |
P2 pofiers b T8 | Tekal waight
it via & | Pt wwighl

= Creating an indirection when the partial weight of a reference has
reached 1.

Unreferenced Entities

Advanced Referencing Counting (4)

Frocass F7
F1 pavzaes &t
reference bo F2 rml
Frocess F) A
gy mownfss H— &

—

Generstion —#_3 |5

= Creating and copying a remote reference in generation reference
counting.

Generation Referencing Counting

Skeleton maintains G
m G[k]is #proxies in generation &
When a proxy is removed

= it sends its generation k& and copy count 77to
the skeleton

= skeleton does
« GIK] -=
o Glk+1] +=n
Remaining problems:
= Node failures, need reliable communication

Identifying Unreachable Objects

» Mark-and-sweep tracing (e.g., in Emerald)

= Local collectors mark objects reachable from a local
root, or a marked object

= A marked proxy notifies its skeleton, thus marking it

= When all local collectors are done marking, collect
unmarked objects

Problem:
= Requires execution to stop during marking

= Incremental approaches may cause excessive
communication

Reference Lists

= Adding and deleting proxies from a reference
list in the skeleton of the object server are
idem potent operations =

do not require reliable communication

= However, we will use acks to be sure that
adding or deleting have been done

= Skeleton is able to control the consistency of
its reference list pinging to all proxies

= Scalability is low

© 2004 Unverstat K, Sysom Architectrs o

Hierarchical Tracing

Hierarchical approach to GC
Nodes are recursively partitioned into groups
Each group does internal GC

References among groups are GC’ed in next
higher group

Hierarchical Tracing

Skeleton marks:
= Soft: reachable only from proxies inside group

= Hard: reachable from proxy outside group, or
reachable from a root inside the group

Proxy marks:
= None: unreachable

= Soft: reachable from a skeleton marked soft
= Hard: reachable from a root

Hierarchical Tracing

GC within a group proceeds as follows:
1. Initial marking of skeletons (soft or hard)

2. Intraprocess propagation of marks from
skeletons to proxies (local GC)

3. Interprocess, intragroup propagation of hard
marks from proxies to skeletons

4. Stabilization (iterate steps 2 and 3)

5. Garbage reclamation (e.g., mark soft
skeletons as garbage, run local GC)

Unreferenced Entities

aTracing in Groups (1)

4
Fulrrisl pamasas. L
Proces goup e

ok ek
& hgd ek

= Initial marking of skeletons

Unreferenced Entities

aTracing in Groups (2)

= After local propagation in each process

© 2004 st K, System At Group

a Tracing in Groups (3)

= Final marking

‘‘

Unreferenced Entities

