
1© 2004 Universität Karlsruhe, System Architecture Group

Lecture 8

June 7 2004

Distributed SystemsDistributed Systems

Naming

© 2004 Universität Karlsruhe, System Architecture Group 2

Schedule of Today
! Motivation, Notions, Objectives

! Naming Entities
! Names, Identifiers, and Addresses
! Name Resolution
! Implementation of a Name Space
! Examples: DNS and X.500

! Locating Mobile Entities
! Naming versus Locating Entities
! Simple Resolution
! Home-based –Hierarchical Approaches

! Removing Unreferenced Entities
! Unreferenced Objects
! Reference Counting and Listing
! Identifying Unreachable Entities

© 2004 Universität Karlsruhe, System Architecture Group 3

Network

Name
Agent

Client
Name
Agent

Client
Name
Agent

Client

Name
Server

Name
Server

Name agent:
• Supplies interface between
name service and client

• Cooperates with name servers
in order to generate, resolve,
… names

• Caches the results

Name server:
• Manages context information
and implements mapping
function

• Sometimes cooperate with
other name servers

• Supplies an interface for the
name agent

Name Server

Components of Name Service Architecture

© 2004 Universität Karlsruhe, System Architecture Group 4

Manipulation of context information:
• ADD: Create a reference: Name → Object
• DELETE: Delete a reference
• MODIFY: Change a reference

Queries:
• READ: Resolve a name into an object
• SEARCH: Find a name or object based on some attributes
• LIST: List all names

Administration:
• Assignment of access privileges
• Authentication
• Extension of the name space

Name Service Operations

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 5

Name service operations

Caching Replicated data
management

Name resolution

Communication Database

Name Resolution
• mapping of names to objects

Caching
• of remote context information
for efficient access

Replicated data management
• management of replicated context
information

Communication
• between agents and name servers
• between name servers for
cooperation purposes

Database
• management of local context
information

Name Server Architecture

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 6

Resolution of Structured Names

Name Server

! Resolution mechanism depends on type of
name

! Location-dependent names
! Name contains the location of the object it

identifies

! Authority-dependent names
! Name contains location of name server being

responsible for name-resolution (the authority)

! Location-independent names
! Name contains no location information

© 2004 Universität Karlsruhe, System Architecture Group 7

Partitioned
name space

NS O11

O12

Node 1

NS O21

Node 2

NS O31

O32

Node 3

Structure of name space:

• Each node has own name server

• Name server only manages the
names of local objects

• Name structure:
NodeID.ObjectID

Names are generated:

• by the local name server

• … through concatenation of
NodeID and local ObjectID

Location-Dependent Names (1)

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 8

Partitioned
name space

NS O11

O12

Node 1

NS O21

Node 2

NS O31

O32

Node 3

Name resolution (of N.O):

• Name agent sends query to node N.

• Name server of N maps O
to a local object

Properties:

+ Nodes are highly autonomous

+ Name authority can be found in
a simple and efficient way

- Objects can not migrate

Location-Dependent Names (2)

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 9

Partitioned
name space

Structure of the name space:
• Every node has a name server
• Name server manages the
names of all locally-created objects

• Objects may migrate
• Name server must be aware of the
locations of all migrated objets

• Name structure: NodeID.ObjectID

Names are generated:
• … by local name server
• … through concatenation of the
NodeID and local unique ObjectID

O31

O32

NS

Node 3

NS O31

O32

O21

Node 2

NSO11

Node 1

NS

O12

Authority-Dependent Names (1)

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 10

Partitioned
name space

NS O11

Node 1

NS O21

Node 2

NS O31

O32

Node 3

O12

Name resolution (of N.O):
• Name agent sends query to node N.
• Name server of N maps O
to a local object

Properties:
+ Name generation is simple
+ Name authority can be found in

a simple and efficient way
+ Objects can migrate
- Additional overhead for the

monitoring of migrated objects
- Only one (fixed) authority per object

Authority-Dependent Names (2)

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 11

Structure of the name space:

• Hierarchically structured NS

• Hierarchy can resemble:

- organizational structure

- system topology

- geographical distribution

- etc.

de au

tu-dresden uka sydney

informatik ira

schmitt liedtke

Location-Independent Names (1)

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 12

Relative name of an object:

• Identifies a name uniquely in
context of its parent object

• Example:
uka/ira/schmitt (parent = de)

Absolute name of an object:
• Globally unique identifier for
each object

• Concatenation of the relative
names of all predecessors

• Example:
/de/uka/ira/liedtke

Location-Independent Names (2)

Name Server

de au

tu-dresden uka sydney

informatik ira

schmitt liedtke

© 2004 Universität Karlsruhe, System Architecture Group 13

Partitioning of name space:

• Hierarchical name space is
split up into zones

• Each zone has at least
one name server

• Name server manages name
space covered by the zone

• Replication achieved by
having multiple name servers
per zone

F

H I

G

Zone 1

A

B C

Zone 2

D

Zone 3

E

Zone 4

F G
H I

Zone 1
Name
Servers

A
B C

Zone 2
Name
Servers

D
Zone 3
Name
Servers

Zone 4
Name
Servers

E

Location-Independent Names (3)

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 14

Every name server knows
• … at least one server of root zone
• … the root zone of every child zone

and at least one name server of it
• Name server manages the name

Name resolution:
• Agent asks arbitrary name server N
• If N knows the name
⇒ local resolution

• If N does not know the name
⇒ Resolution starts with a root server
⇒ … and works its way down the

server hierarchy until the name
has been completely resolved

F G
H I

A
B C

D E

A
F

F

D E

F

Location-Independent Names (4)

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 15

Name resolution
• … is done by the authority
responsible for the object

Properties:
+ Objects can migrate
+ Authority for an object may change
+ Multiple authorities possible

(replication)
- Resolution may be expensive
(Efficiency improved by caching)

- Name generation may require
communication

F G
H I

A
B C

D E

A
F

F

D E

F

Location-Independent Names (5)

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 16

• Cache contains mapping information

• On receipt of a request for resolution,
agent checks if required information
is already or still in the cache

- Yes: Resolution is done locally

- No: Agent sends a query to the
naming system; its result is
stored in the cache

• A cache entry is invalidated when
after a resolution it is found to be stale

Naming
System

Client

Agent

Cache

Caching

Name Server

© 2004 Universität Karlsruhe, System Architecture Group 17

NS: Name Server
CI: Context Information
H: Host
G: Gateway

CI

NS1

H H H

G
LAN

CI

NS2

WAN

CI

NS3

H

G

LANH H

Goal:
• High availability, fast access

Pessimistic methods:
• One-copy serializability
• Limited availability if
the network is partitioned

Optimistic methods:
• Weak consistency
• But: Available even if
the network is partitioned

Replication (1)

Name Server Replication

© 2004 Universität Karlsruhe, System Architecture Group 18

NS: Name Server
CI: Context Information
H: Host
G: Gateway

CI

NS1

H H H

G
LAN

CI

NS2

WAN

CI

NS3

H

G

LANH H

Weak consistency is sufficient:

• If naming information is changed
infrequently

• Even if stale information is used,
in many cases no harm will be done

• If use of the information will reveal
that it is stale

Replication (2)

Name Server Replication

© 2004 Universität Karlsruhe, System Architecture Group 19

Examples

Some Examples

! DNS: The Internet Domain Name System

! Jini: Network Technology

! GNS: Global Navigation System

! NIS - Network Information Service

! X.500

! LDAP - Lightweight Directory Protocol

© 2004 Universität Karlsruhe, System Architecture Group 20

*Paul Mockapetris (1984, standard in the Internet since 1987)

Domain Name System*

DNS = distributed database used by TCP/IP applications
to map between hostnames and IP addresses +
to provide electronic mail routing information

Primary task:
! Mapping from a symbolic name to the 32 bit Internet(IP)

address, e.g.
mcculler.uni-karlsruhe.de → 129……

! General functionality:

! Mapping from hierarchical names to objects

Examples

© 2004 Universität Karlsruhe, System Architecture Group 21

Domain Name System

! Name space: tree, edges labeled

! Name of incoming edge identifies a node

! Each subtree is called a domain

! Sequence of edge labels to the root is a
domain name

! Each node contains a resource record

© 2004 Universität Karlsruhe, System Architecture Group 22

Domain Name System

Name space:
manages names for: computer, email-server, ...

Name structuring:
! hierarchical name space
! pathnames start at the leave and end at the root, e.g.

i30www.ira.uka.de
! Top level domain has fixed names (can be changed only by an

official Internet-office) below top level domain you can have as
many levels as you need

Examples

© 2004 Universität Karlsruhe, System Architecture Group 23

Domain Name Meaning
com Commercial bussiness
edu Universities (colleges) in USA
gov Government departments(USA)
mil Military institutions
net Netprovider
org All other business
arpa Temporal ARPA-domain
int International organisations

Zip code of
Country(e.g. de)

Abbreviations of all countries

DNS Top-Level Domain

Examples

© 2004 Universität Karlsruhe, System Architecture Group 24

DNS Name Servers

Note: Name server names are
in italics, and the corresponding
domains are in parentheses.

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk
qmw.ac.uk

dcs.qmw.ac.uk
*.qmw.ac.uk

.ic.ac.uk.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk
co.uk

yahoo.com

© 2004 Universität Karlsruhe, System Architecture Group 25

DNS Resource Records

! Most important types of resource records forming the
contents of nodes in the Internet’s DNS name space.

Contains any entity-specific information considered usefulAny kindTXT

Holds information on the host (OS + HW-type) this node representsHostHINFO

Contains the canonical name of a hostHostPTR

Symbolic link with the primary name of the represented nodeNodeCNAME

Refers to a name server that implements the represented zoneZoneNS

Refers to a server handling a specific serviceDomainSRV

Refers to a mail server to handle mail addressed to this nodeDomainMX

Contains an IP address of the host this node representsHostA

Holds information on the represented zoneZoneSOA

DescriptionAssociated
entity

Type of
record

Examples

© 2004 Universität Karlsruhe, System Architecture Group 26

DNS Name Space

© 2004 Universität Karlsruhe, System Architecture Group 27

DNS Implementation

! An excerpt from
the DNS
database for the
zone cs.vu.nl.

Examples

© 2004 Universität Karlsruhe, System Architecture Group 28

DNS Implementation

! Part of the description for the vu.nl domain
which contains the cs.vu.nl domain.

130.37.21.1Asolo.cs.vu.nl

solo.cs.vu.nlNIScs.vu.nl

Record valueRecord typeName

© 2004 Universität Karlsruhe, System Architecture Group 29

Further reading:
F. Halsall: “Data Communications, Computer Networks and Open System”,

Addison-Wesley 1992

D. Comer: “Computernetzwerke und Internets”, Prentice Hall 1997

Replication and Caching in DNS

! Replication
! for every root server there are at least 2 replicas

! primary/backup principle
! backup servers update their state periodically via

primary server
! Caching

! each name server implements caching

Examples

© 2004 Universität Karlsruhe, System Architecture Group 30

de au

tu-dresden uka sydney

informatik ira

i20www i30www

• Hierarchical, location-independent
names

• Name space is split up into
domains being ordered in a
tree-like fashion

• Each domain receives a domain
name being unique among its
sibling nodes

• Absolute name of a domain is
obtained by concatenating the
relative names on the path from
this domain to the root of the tree

Example: i30www.ira.uka.de

DNS Name Space

Examples

© 2004 Universität Karlsruhe, System Architecture Group 31

opel

dev Server for opel.com

com Root server for com

prod

rhm eisen detroit

DNS Name Server Hierarchy

Examples

© 2004 Universität Karlsruhe, System Architecture Group 32

name

21

AP

user

service
access
protocol

name
resolver

Client

domain
name
server

network manager

OS

IP-address

5

OS

6

TCP/IP

Server

service
process

service
access
protocol

OS

name

3

IP-address

4
TCP/IPTCP/IP

DNS System Architecture

Examples

© 2004 Universität Karlsruhe, System Architecture Group 33

user

ftp

hostname

name resolver
hostname

IP address

TCP

IP

software
hardware ...

If the name
could be resolved

Example

IP Address

Examples

© 2004 Universität Karlsruhe, System Architecture Group 34

Overview on Jini

! The general organization of a JavaSpace in Jini.

© 2004 Universität Karlsruhe, System Architecture Group 35

Service Discovery in Jini

Printing
service

service
Lookup

service
Lookup

Printing
service

admin

admin

admin, finance

finance

Client

Client

Corporate
infoservice

1. �finance�
lookup service?

2. Here I am:

3. Request
printing

4. Use printing
service

Network

© 2004 Universität Karlsruhe, System Architecture Group 36

Books on Jini

! “Jini Technology: An Overview” by Ilango Kumaran
Prentice Hall PTR (November 2001),
"For all managers, architects and consultants seeking to
evaluate Jini from a technological and architectural perspective,
and compare it with other work."

! “ Developing Jini Applications Using Java 2 “ by
Hinkmond Wong
Addison Wesley Longman (September 2001),
"This book is your key to understanding and avoiding common
traps and pitfalls that await developers approaching Jini and
J2ME technology for the first time. “

© 2004 Universität Karlsruhe, System Architecture Group 37

Global Name Service (GNS)

UK FR

AC

QMWDI: 322

Peter.Smith

passwordmailboxes

DI: 599 (EC)

DI: 574DI: 543

DI: 437

Alpha GammaBeta

© 2004 Universität Karlsruhe, System Architecture Group 38

CCITT and ISO standard (1988):
Names

• List of tuples <attribute = value)
• Attributes

- country “c”
- organization “o”
- organizational unit “ou”
- surname “sn”
...
- telephone number “telephone”

Directory Service: X 500

Examples

Example:
/c=de/o=uni-karlsruhe/ou=rz/sn=zoller/telephone=+49 721 608 405

© 2004 Universität Karlsruhe, System Architecture Group 39

Directory Service: X.500

! A Directory Service supports lookup based on a set of
attribute values (yellow pages)

! Directory entries contain <attrib, value> pairs
! Set of entries forms Directory Information Base

(DIB).
! Naming attributes of an entry jointly identify an entry

uniquely.
! Canonical sequences of naming attributes form the

Directory Information Tree (DIT)
! Edges are labeled with <attrib, value> pairs

! Each name attribute is a so called RDN (relative
distinguished name)

© 2004 Universität Karlsruhe, System Architecture Group 40

The X.500 Directory Entries

! A simple example of a X.500 directory
entry using X.500 naming conventions.

130.37.21.11--WWW_Server

130.37.21.11--FTP_Server

130.37.24.6, 192.31.231,192.31.231.66--Mail_Servers

Main serverCNCommonName

Math. & Comp. Sc.OUOrganizationalUnit

Vrije UniversiteitOOrganization

AmsterdamLLocality

NLCCountry

ValueAbbr.Attribute

Examples

© 2004 Universität Karlsruhe, System Architecture Group 41

The X.500 DIB

! Part of the directory information tree

Examples

© 2004 Universität Karlsruhe, System Architecture Group 42

The X.500 Name Space

! Two directory entries having Host_Name as RDN

192.31.231.66Host_Address192.31.231.42Host_Address

zephyrHost_NamestarHost_Name

Main serverCommonNameMain serverCommonName

Math. & Comp. Sc.OrganizationalUnitMath. & Comp. Sc.OrganizationalUnit

Vrije UniversiteitOrganizationVrije UniversiteitOrganization

AmsterdamLocalityAmsterdamLocality

NLCountryNLCountry

ValueAttributeValueAttribute

Examples

© 2004 Universität Karlsruhe, System Architecture Group 43

X.500 Directory Information Tree

... France (country) Great Britain (country) Greece (country)...

BT Plc (organization) University of Gormenghast (organization)... ...

Department of Computer Science (organizationalUnit)
Computing Service (organizationalUnit)

Engineering Department (organizationalUnit)

...

...

X.500 Service (root)

Departmental Staff (organizationalUnit)

Research Students (organizationalUnit)
ely (applicationProcess)

...

...

Alice Flintstone (person) Pat King (person) James Healey (person) Janet Papworth (person)...

© 2004 Universität Karlsruhe, System Architecture Group 44

X.500 Lookup

Name lookup
list(/C=NL/O=Vrije Universiteit/

OU=Math.&Comp.Sci./CN=Main server)
returns corresponding names
star zephyr

Directory lookup
search &(C=NL)(O=Vrije Universiteit)

(OU=*)(CN=Main server)
returns all entries with matching attributes

© 2004 Universität Karlsruhe, System Architecture Group 45

Locating Mobile Entities

Locating Mobile Entities

! Up to now we always had a mapping from:

User friendly names → node addresses

! Mobile systems often change either their names or
their addresses in a DS, we need a better solution for
looking up a specific node:
! Name → identifier
! Identifier → address

© 2004 Universität Karlsruhe, System Architecture Group 46

Migration of Service

Example:
Assume we move ftp.cs.vu.nl to a new machine in a
very far away domain, suppose: ftp.cs.unisa.edu.au

However, we would like to use ftp.cs.vu.nl , because
many applications might contains program fragments
using this name a as symbolic link, i.e. this name will
be used as an ID, thus hanging this ID, all links to it
will be invalid.

© 2004 Universität Karlsruhe, System Architecture Group 47

Two Principle Solutions

1. Insert the address of the new machin in the DND
data base for the entry cs.vu.nl

! No implications for look ups
! However, if this ftp-service will migrate again to some

other place, also its entry in the DNS data base has to be
updated

2. Insert the name of the new machione instead of its
address (thus ftp.cs.vu.nl becomes a symbolic name
link).
! Loop ups are less efficient due to its 2 steps

1. Look for the name of the new machine
2. Look for the address related to this new name

© 2004 Universität Karlsruhe, System Architecture Group 48

Naming versus Locating Entities

a) Single level mapping between names and addresses
b) T-level mapping using identities.

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 49

Location Services

! Simple approaches (in general, LAN only)

! Broadcast id, corresponding node responds
with its current address (ex.: ARP)

! Multicast id to a well-known group, all mobile
nodes subscribe to that group

© 2004 Universität Karlsruhe, System Architecture Group 50

Forwarding Pointers (1)

! Principle of forwarding pointers using (proxy, skeleton) pairs

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 51

Forwarding Pointers (2)

Redirecting a forwarding pointer, by storing a shortcut in a proxy

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 52

Location Home-Based Approach

! Can be used as a fall-back mechanism with
forwarding pointers

! A dedicated home node always keeps an up-
to-date pointer to the mobile object

! Home node is typically node where an object
originates

! Make home node fault-tolerant to ensure
object can always be located

© 2004 Universität Karlsruhe, System Architecture Group 53

Home-Based Approaches

! The principle of Mobile IP

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 54

Hierarchical Approaches (1)

! Hierarchical organization of a location service into domains,
each having an associated directory node.

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 55

Hierarchical Approaches (2)

! An example of storing information of an entity having two
addresses in different leaf domains.

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 56

Hierarchical Approaches (3)

! Looking up a location in a hierarchically organized location
service

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 57

Hierarchical Approaches (4)

a) An insert request is forwarded to the first node that knows about entity
E

b) A chain of forwarding pointers to the leaf node is created

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 58

Pointer Caches (1)

! Caching a reference to a directory node of the lowest-level domain in
which an entity will reside most of the time

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 59

Pointer Caches (2)

! Cache entry that needs to be invalidated because it returns a nonlocal
address, while such an address is available.

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 60

Scalability Issues

Scalability issues related to uniformly placing subnodes of a partitioned
root node across the network covered by a location service.

Locating Mobile Entities

© 2004 Universität Karlsruhe, System Architecture Group 61

Scalability Solution

Use of a fat tree to increase the number of servers
at upper levels of the tree

© 2004 Universität Karlsruhe, System Architecture Group 62

Scalability Solution

! Replicating and partitioning binding information
among the multiple parents in the fat tree

© 2004 Universität Karlsruhe, System Architecture Group 63

Deleting of Objects

! How to manage, that an object can be
deleted without any dangling reference?

! However, we want to able to delete objects
whether there might be any valid refernces to
that object

! What to do with objects without any current
reference ? (it’s wasting resource, may be
never reused again)

⇒ we need a distributed garbage collection

© 2004 Universität Karlsruhe, System Architecture Group 64

Problem of Unreferenced Objects

! An example of a graph representing objects containing references to
each other.

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 65

Reference Counting (1)

! The problem of maintaining a proper reference count in the
presence of unreliable communication

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 66

Reference Counting (2)

a) Copying a reference to another process and
incrementing the counter too late

b) A solution.

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 67

Advanced Referencing Counting (1)

a) The initial assignment of weights in weighted reference
counting

b) Weight assignment when creating a new reference.

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 68

Advanced Referencing Counting (2)

c) Weight assignment when copying a reference.

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 69

Advanced Referencing Counting (3)

! Creating an indirection when the partial weight of a reference has
reached 1.

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 70

Advanced Referencing Counting (4)

! Creating and copying a remote reference in generation reference
counting.

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 71

Generation Referencing Counting

Skeleton maintains G
! G[k] is #proxies in generation k
When a proxy is removed
! it sends its generation k and copy count n to

the skeleton
! skeleton does

! G[k] -= 1
! G[k+1] += n

Remaining problems:
! Node failures, need reliable communication

© 2004 Universität Karlsruhe, System Architecture Group 72

Identifying Unreachable Objects

! Mark-and-sweep tracing (e.g., in Emerald)
! Local collectors mark objects reachable from a local

root, or a marked object
! A marked proxy notifies its skeleton, thus marking it
! When all local collectors are done marking, collect

unmarked objects

Problem:
! Requires execution to stop during marking
! Incremental approaches may cause excessive

communication

© 2004 Universität Karlsruhe, System Architecture Group 73

Reference Lists

! Adding and deleting proxies from a reference
list in the skeleton of the object server are
idem potent operations ⇒
do not require reliable communication

! However, we will use acks to be sure that
adding or deleting have been done

! Skeleton is able to control the consistency of
its reference list pinging to all proxies

! Scalability is low

© 2004 Universität Karlsruhe, System Architecture Group 74

Hierarchical Tracing

! Hierarchical approach to GC
! Nodes are recursively partitioned into groups
! Each group does internal GC
! References among groups are GC’ed in next

higher group

© 2004 Universität Karlsruhe, System Architecture Group 75

Hierarchical Tracing

Skeleton marks:
! Soft: reachable only from proxies inside group
! Hard: reachable from proxy outside group, or

reachable from a root inside the group

Proxy marks:
! None: unreachable
! Soft: reachable from a skeleton marked soft
! Hard: reachable from a root

© 2004 Universität Karlsruhe, System Architecture Group 76

Hierarchical Tracing

GC within a group proceeds as follows:
1. Initial marking of skeletons (soft or hard)
2. Intraprocess propagation of marks from

skeletons to proxies (local GC)
3. Interprocess, intragroup propagation of hard

marks from proxies to skeletons
4. Stabilization (iterate steps 2 and 3)
5. Garbage reclamation (e.g., mark soft

skeletons as garbage, run local GC)

© 2004 Universität Karlsruhe, System Architecture Group 77

Tracing in Groups (1)

! Initial marking of skeletons

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 78

Tracing in Groups (2)

! After local propagation in each process

Unreferenced Entities

© 2004 Universität Karlsruhe, System Architecture Group 79

Tracing in Groups (3)

! Final marking

Unreferenced Entities

